Semantic Representation and Querying of caBIG Data Services

  • E. Patrick Shironoshita
  • Ray M. Bradley
  • Yves R. Jean-Mary
  • Thomas J. Taylor
  • Michael T. Ryan
  • Mansur R. Kabuka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5109)

Abstract

A computational grid infrastructure for biomedical research, called caGrid, is under development by the National Cancer Institute (NCI) as part of the cancer Biomedical Informatics Grid (caBIG) Initiative. In this paper we present a model that enables users to query an integrated view of caBIG data services at a conceptual semantic level. The model is based on semCDI, a formulation to generate an ontology view of caBIG semantics and pose queries against this view using the SPARQL query language complemented with Horn rules. We present here a mechanism to process these queries algebraically using our semQA query algebra extension for SPARQL, in order to create sub-expressions for each data service. We then show how resulting graphs from these sub-expressions are then merged using Horn rules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Working Draft 30 (October 2007), http://www.w3.org/TR/rif-bld/
  2. 2.
    Collins, F.S., Green, E.D., Guttmacher, A.E., Guyer, M.S.: US National Human Genome Research Institute. A vision for the future of genomics research. Nature 422, 835–847 (2003)CrossRefGoogle Scholar
  3. 3.
    Hartel, F., Coronado, S., Dionne, R., Fragoso, G., Golbeck, J.: Modeling a Description Logic Vocabulary for Cancer Research. Journal of Biomedical Informatics 38, 114–129 (2005)CrossRefGoogle Scholar
  4. 4.
    Hayes, P. (ed.): RDF Semantics. W3C Recommendation 10 (February 2004), http://www.w3.org/TR/rdf-mt/
  5. 5.
    Langegger, A., Blochl, M., Wob, W.: Sharing Data on the Grid using Ontologies and distributed SPARQL Queries. In: 18th International Workshop on Database and Expert Systems Applications, pp. 450–454. IEEE, Los Alamitos (2007)Google Scholar
  6. 6.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
  7. 7.
    Quilitz, B.: DARQ – Federated Queries with SPARQL (1/2008), http://darq.sourceforge.net/
  8. 8.
    Rodriguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity among Entity Classes from Different Ontologies. IEEE Trans. on Knowledge and Data Eng. 15, 442–456 (2003)CrossRefGoogle Scholar
  9. 9.
    Saltz, J., et al.: caGrid: design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics 22, 1910–1916 (2006)CrossRefGoogle Scholar
  10. 10.
    Shironoshita, E.P., Jean-Mary, Y.R., Kabuka, M.R.: semCDI: A Query Formulation for Semantic Data Integration in caBIG. JAMIA (accepted for publication) Google Scholar
  11. 11.
    Shironoshita, E.P., Kabuka, M.R.: semQA: SPARQL Algebra and Complexity Analysis. IEE Transactions on Knowledge and Data EngineeringGoogle Scholar
  12. 12.
    Stuckenschmidt, H., Vdovjak, R., Broekstra, J.: Index Structures and Algorithms for Querying Distributed RDF Repositories. In: Proc. Of WWW Conf. 2004, pp. 17–22 (May 2004)Google Scholar
  13. 13.
    Wang, X., Gorlitsky, R., Almeida, J.S.: From XML to RDF: how semantic web technologies will change the design of ’omic’ standards. Nat. Biotechnol. 9, 1099–1103 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • E. Patrick Shironoshita
    • 1
  • Ray M. Bradley
    • 1
  • Yves R. Jean-Mary
    • 1
  • Thomas J. Taylor
    • 1
  • Michael T. Ryan
    • 1
  • Mansur R. Kabuka
    • 1
    • 2
  1. 1.INFOTECH Soft, IncMiami
  2. 2.University of Miami, Coral Gables

Personalised recommendations