Phase-Type Approximations for Message Transmission Times in Web Services Reliable Messaging

  • Philipp Reinecke
  • Katinka Wolter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5119)


Web-Services based Service-Oriented Architectures (SOAs) become ever more important. The Web Services Reliable Messaging standard (WSRM) provides a reliable messaging layer to these systems. In this work we present parameters for acyclic continuous phase-type (ACPH) approximations for message transmission times in a WSRM implementation confronted with several different levels of IP packet loss. These parameters illustrate how large data sets may be represented by just a few parameters. The ACPH approximations presented here can be used for the stochastic modelling of SOA systems. We demonstrate application of the models using an M/PH/1 queue.


Phase-Type Distributions WSRM Modelling Distribution Fitting Response Time Analysis Queueing Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BEA Systems, IBM, Microsoft Corporation Inc, TIBCO Software, Inc.: Web Services Reliable Messaging Protocol (WS-ReliableMessaging) (February 2005)Google Scholar
  2. 2.
    Reinecke, P., van Moorsel, A.P.A., Wolter, K.: The Fast and the Fair: A Fault-Injection-Driven Comparison of Restart Oracles for Reliable Web Services. In: QEST 2006: Proceedings of the 3rd International Conference on the Quantitative Evaluation of Systems, Washington, DC, USA, pp. 375–384. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  3. 3.
    Reinecke, P., Wolter, K.: Adaptivity Metric and Performance for Restart Strategies in Web Services Reliable Messaging. In: WOSP 2008 (2008) (accepted for publication)Google Scholar
  4. 4.
    Telek, M., Heindl, A.: Matching Moments for Acyclic Discrete and Continous Phase-Type Distributions of second order. International Journal of Simulation Systems, Science & Technology 3(3–4), 47–57 (2002)Google Scholar
  5. 5.
    Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting with the EM Algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245–258 (2006)CrossRefGoogle Scholar
  6. 6.
    Panchenko, A., Thümmler, A.: Efficient phase-type fitting with aggregated traffic traces. Perform. Eval. 64(7-8), 629–645 (2007)CrossRefGoogle Scholar
  7. 7.
    Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Haverkort, B.R.: Performance of Computer Communication Systems: A Model-Based Approach. John Wiley & Sons, Chichester (1998)Google Scholar
  9. 9.
    The Apache Software Foundation: Apache Sandesha,
  10. 10.
    The Apache Software Foundation: Apache Axis,
  11. 11.
    Zdun, U., Völter, M., Kircher, M.: Pattern-Based Design of an Asynchronous Invocation Framework for Web Services. Int. J. Web Service Res. 1(3), 42–62 (2004)Google Scholar
  12. 12.
    Various authors: NetEm – LinuxNet (Last visited October 8th, 2007),
  13. 13.
    Zhang, Y., Paxson, V., Shenker, S.: The Stationarity of Internet Path Properties: Routing, Loss, and Throughput. ACIRI Technical Report (2000)Google Scholar
  14. 14.
    Zhang, Y., Du, N., Paxson, V., Shenker, S.: On the Constancy of Internet Path Properties. In: Proceedings of the ACM SIGCOMM Internet Measurement Workshop (2001)Google Scholar
  15. 15.
    Varela, M., Marsh, I., Grönvall, B.: A systematic study of PESQ’s behavior (from a networking perspective). In: Proceedings of the 5th International Conference MESAQIN 2006: Measurement of Audio and Video Quality in Networks (2006)Google Scholar
  16. 16.
    Sanneck, H., Carle, G., Koodli, R.: A framework model for packet loss metrics based on loss runlengths. In: Proceedings of the SPIE/ACM SIGMM Multimedia Computing and Networking Conference 2000, San Jose, CA, SPIE/ACM SIGMM (January 2000)Google Scholar
  17. 17.
    Jiang, W., Schulzrinne, H.: Modeling of Packet Loss and Delay and Their Effect on Real-Time Multimedia Service Quality. In: Proc. NOSSDAV (2000)Google Scholar
  18. 18.
    Karn, P., Partridge, C.: Improving Round-Trip Time Estimates in Reliable Transport Protocols. ACM Transactions on Computer Systems 9(4), 364–373 (1991)CrossRefGoogle Scholar
  19. 19.
    Krishnamurthy, B., Rexford, J.: Web Protocols and Practice. Addison Wesley, Reading (2001)Google Scholar
  20. 20.
    van Moorsel, A., Wolter, K.: Analysis and Algorithms for Restart. In: Proc. 1st International Conference on the Quantitative Evaluation of Systems (QEST), Twente, The Netherlands, September 2004, pp. 195–204 (2004)Google Scholar
  21. 21.
    Paxson, V.: End-to-End Internet Packet Dynamics. In: Proceedings of the ACM SIGCOMM 1997 conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Cannes, France. Computer Communication Review, vol. 27(4), pp. 139–154. ACM Press (1997)Google Scholar
  22. 22.
    Moon, S.B., Skelly, P., Towsley, D.: Estimation and Removal of Clock Skew from Network Delay Measurements. Technical report, University of Massachusetts, Amherst, MA, USA (1998)Google Scholar
  23. 23.
    Khlifi, H., Grégoire, J.C.: Low-complexity offline and online clock skew estimation and removal. Computer Networks: The International Journal of Computer and Telecommunications Networking 50(11), 1872–1884 (2006)MATHGoogle Scholar
  24. 24.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2006) ISBN 3-900051-07-0Google Scholar
  25. 25.
    Reinecke, P., Wolter, K.: ACPH models for WSRM (2008),
  26. 26.
    Bobbio, A., Telek, M.: A Benchmark for PH Estimation Algorithm: Results for Acyclic-PH (1994)Google Scholar
  27. 27.
    Horváth, A., Telek, M.: Approximating heavy tailed behaviour with Phase type distributions. In: 3rd International Conference on Matrix-Analytic Methods in Stochastic models (MAM 2003) (2000)Google Scholar
  28. 28.
    Haverkort, B.R., van Moorsel, A.P., Dijkstra, A.: MGMtool: A Performance Modelling Tool based on Matrix Geometric Techniques. In: Pooley, R., Hillston, J. (eds.) Computer Performance Evaluation 1992, Modelling Techniques and Tools, Antony Rowe Ltd, pp. 397–401 (1992)Google Scholar
  29. 29.
    Bobbio, A., Horváth, A., Telek, M.: The scale factor: a new degree of freedom in phase-type approximation. Perform. Eval. 56(1-4), 121–144 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philipp Reinecke
    • 1
  • Katinka Wolter
    • 1
  1. 1.Humboldt-Universität zu BerlinBerlin 

Personalised recommendations