A Stitching Algorithm for Automatic Registration of Digital Radiographs

  • André Gooßen
  • Mathias Schlüter
  • Thomas Pralow
  • Rolf-Rainer Grigat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5112)


In digital radiography oversized radiographs have to be assembled from multiple spatially overlapping exposures. We present an algorithm for fast automatic registration of these radiographs. An external feature is brought into the radiographs to facilitate the reconstruction. Pivotal for this algorithm is an actual interpretation of this feature instead of a simple detection. It possesses strong robustness against noise, feature masking and feature displacement. Evaluation has been performed on 2000 pairs of clinical radiographs. The proposed algorithm proved to be a powerful enhancement of established automatic registration algorithms.


Compute Radiography Optical Character Recognition Digital Radiography Normalize Cross Correlation Digital Radiograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Čapek, M., Wegenkittl, R., Felkel, P.: A fully automatic stitching of 2D medical data sets. BIOSIGNAL 16, 326–328 (2002)Google Scholar
  2. 2.
    Johnson, H., Christensen, G., Little, J., Desmedt, P., Hill, D., Hawkes, D.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5), 450–461 (2002)CrossRefGoogle Scholar
  3. 3.
    Gramer, M., Bohlken, W., Lundt, B., Pralow, T., Buzug, T.M.: An algorithm for automatic stitching of CR X-ray images. Advances in Medical Engineering 114, 193–198 (2007)CrossRefGoogle Scholar
  4. 4.
    Lehmann, T.: Medizinische Bildverarbeitung. In: Kramme, R. (ed.) Medizintechnik: Verfahren, Systeme, Informationsverarbeitung, 2nd edn., pp. 588–612. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Pohle, R.: Computergestützte Bildanalyse zur Auswertung medizinischer Bilddaten. Habilitationsschrift, Otto-von-Guericke-Universität Magdeburg (2004)Google Scholar
  6. 6.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Leipzig Math Phys Kl 69, 262–267 (1917)Google Scholar
  7. 7.
    Harmon, L.: Automatic recognition of print and script. Proc IEEE 60(10), 1165–1176 (1972)CrossRefGoogle Scholar
  8. 8.
    Heipke, C.: Overview of image matching techniques. OEEPE Official Publications 33, 173–189 (1996)Google Scholar
  9. 9.
    Penney, G., Weese, J., Little, J., Desmedt, P., Hill, D., Hawkes, D.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans. Med. Imaging 17(4), 586–595 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • André Gooßen
    • 1
  • Mathias Schlüter
    • 2
  • Thomas Pralow
    • 2
  • Rolf-Rainer Grigat
    • 1
  1. 1.Vision SystemsHamburg University of TechnologyHamburg 
  2. 2.General X-RayPhilips Medical SystemsHamburg 

Personalised recommendations