Real Time Eyes Tracking and Classification for Driver Fatigue Detection

  • M. Imran Khan
  • A. Bin Mansoor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5112)

Abstract

In this paper, we propose a vision-based real time algorithm for driver fatigue detection. Face and eyes of the driver are first localized and then marked in every frame obtained from the video source. The eyes are tracked in real time using correlation function with an automatically generated online template. The proposed algorithm can detect eyelids movement and can classify whether the eyes are open or closed by using normalized cross correlation function based classifier. If the eyes are closed for more than a specified time an alarm is generated. The accuracy of algorithm is demonstrated using real data under varying conditions for people with different gender, skin colors, eye shapes and facial hairs.

Keywords

Face detection Eyes detection Eye tracking Driver fatigue detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandt, T., Stemmer, R., Rakotonirainy, A.: Affordable visual driver monitoring system for fatigue and monotony. IEEE International Conference on Systems, Man and Cybernetics 7, 6451–6456 (2004)Google Scholar
  2. 2.
    Bagci, A.M., Ansari, R., Khokhar, A., Cetin, E.: Eye tracking using Markov models. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp. 818–821 (2004)Google Scholar
  3. 3.
    Goudail, F., Lange, E., Iwamoto, T., Kyuma, K., Otsu, N.: Face recognition system using local autocorrelations and multiscaleintegration. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 1024–1028 (1996)CrossRefGoogle Scholar
  4. 4.
    Beymer, D., Flickner, M.: Eye gaze tracking using an active stereo head. In: Proceedings of the 2003 IEEE Computer Society on Computer Vision and Pattern Recognition (CVPR 2003), San Jose, CA, USA (2003)Google Scholar
  5. 5.
    Viola, P., Jones, J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  6. 6.
    Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Transactions on Multimedia 1(3), 264–277 (1999)CrossRefGoogle Scholar
  7. 7.
    Singh, S.K., Chauhan, D.S., Vatsa, M., Singh, R.: A Robust Skin Color Based Face Detection Algorithm. Tamkang Journal of Science and Engineering 6, 227–234 (2003)Google Scholar
  8. 8.
    Singh, S., Papanikolopoulos, N.: Monitoring Driver Fatigue Using Facial Analysis Technique. In: Proceedings of International Conference on Intelligent Transportation Systems, Tokyo, Japan, pp. 314–318 (1999)Google Scholar
  9. 9.
    Feris, R.S., Emidio de Campos, T., Cesar Junior, R.M.: Detection and Tracking of Facial Features in Video Sequences. In: Proceedings of the Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence, vol. 1793, pp. 127–135 (2000)Google Scholar
  10. 10.
    Rowley, H., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 23–28 (1998)CrossRefGoogle Scholar
  11. 11.
    Lee, S.-J., Jung, S.-B., Kwon, J.-W., Seung-Hong: Face detection and recognition using PCA. In: Proceedings of the IEEE Region 10 Conference, vol. 1, pp. 84–87 (1999)Google Scholar
  12. 12.
    Huang, J., Shao, X., Wechsler, H.: Pose discrimination and eye detection using support vector machines (SVMs). In: Proceeding of NATO-ASI on Face Recognition, From Theory to Applications, pp. 528–536Google Scholar
  13. 13.
    Cherif, R.Z., Nat-Ali, A., Krebs, M.O.: An adaptive calibration of an infrared light device used for gaze tracking. In: Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, USA (2000)Google Scholar
  14. 14.
    Morimoto, C., Flickner, M.: Real-time multiple face detection using active illumination, Federal Highway Administration, Office of Motor Carriers (1998)Google Scholar
  15. 15.
    Morimoto, C.H., Flickner, M.: Real-time multiple face detection using active illumination. In: IEEE conference on Face and Gesture Recognition, pp. 8–13 (2000)Google Scholar
  16. 16.
    Ramadan, S., Abd-Almageed, W., Smith, C.E.: Eye Tracking Using Active Deformable Models. In: The III Indian Conference on Computer Vision, Graphics and Image processing, India (2002)Google Scholar
  17. 17.
    Artaud, P., Planque, S., Lavergne, C., Cara, H., de Lepine, P., Tarriere, C., Gueguen, B.: An on-board system for detecting lapses of alertness in car driving. In: Proceedings of the Fourteenth International Conference on Enhanced Safety of Vehicles, Munich, Germany, vol. 1 (1994)Google Scholar
  18. 18.
    Eriksson, M., Papanikotopoulos, N.: Eye tracking for detection of driver fatigue. In: IEEE Conference on Intelligent Transportation Systems, pp. 314–319 (1997)Google Scholar
  19. 19.
    Ji, Q., Yang, X.: Real-Time Eye, Gaze, and Face Pose Tracking for Monitoring Driving Vigilance. Elsevier Science Ltd., Amsterdam (2002)Google Scholar
  20. 20.
    Nakano, T., Sugiyama, K., Mizuno, M., Yamamoto, S.: Blink measurement by image processing and application to warning of driver’s drowsiness in automobiles. IEEE Intelligent Vehicles, 285–290 (1998)Google Scholar
  21. 21.
    Shih, S.-W., Liu, J.: A novel approach to 3-D gaze tracking using stereo cameras. IEEE Transactions on Systems, Man and Cybernetics 34(1), 234–245 (2004)CrossRefGoogle Scholar
  22. 22.
    Ron, K., Paul, R.: PERCLOS: A Valid Psychophysiological Measure of Alertness by Psychomotor Vigilance, Federal Highway Administration, Office of Motor Carriers, United States (1998)Google Scholar
  23. 23.
    Nilsson, M., Nordberg, J., Claesson, I.: Face Detection Using Local SMQT Features And Split Up SNoW Classifier. IEEE International Conference on Acoustics, Speech and Signal Processing 2, 589–592 (2007)Google Scholar
  24. 24.
    Barzilai, R., Himmelblau, C.: Driving Assistance system: Drowsiness Detection by video camera, Department of Electrical Engineering The Vision Research and Image Science Laboratory, Technion - Israel Institute of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Imran Khan
    • 1
  • A. Bin Mansoor
    • 1
  1. 1.College of Aeronautical EngineeringNational University of Sciences and TechnologyRawalpindiPakistan

Personalised recommendations