Advertisement

Multi-resolution Texture Classification Based on Local Image Orientation

  • Ovidiu Ghita
  • Paul F. Whelan
  • Dana E. Ilea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5112)

Abstract

The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases.

Keywords

Local image orientation texture classification SVM multi-resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)Google Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)Google Scholar
  3. 3.
    Chellappa, R., Kashyap, R.L., Manjunath, B.S.: Model based texture segmentation and classification. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision. World Scientific Publishing, Singapore (1998)Google Scholar
  4. 4.
    Chan, C., Lin, C.J.: LIBSVM: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
  5. 5.
    Dyer, C.R., Hong, T., Rosenfeld, A.: Texture classification using gray level co-occurrence based on edge maxima. IEEE Transactions on Systems, Man, and Cybernetics 10, 158–163 (1980)CrossRefGoogle Scholar
  6. 6.
    Flores, M.A., Leon, L.A.: Texture classification trough multiscale orientation histogram analysis. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 479–493. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Germain, C., Da Costa, J.P., Lavialle, O., Baylou, P.: Multiscale estimation of vector field anisotropy application to texture characterization. Signal Processing 83, 1487–1503 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Guérin-Dugué, A., Oliva, A.: Classification of scene photographs from local orientation features. Pattern Recognition Letters 21, 1135–1140 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Haralick, R.M.: Statistical and structural approaches to texture. Proc of IEEE 67, 786–804 (1979)CrossRefGoogle Scholar
  10. 10.
    Ilea, D.E., Ghita, O., Whelan, P.F.: Evaluation of local orientation for texture classification. In: Proc of the 3rd International Conference on Computer Vision Theory and Applications (VISAPP), Funchal, Madeira, Portugal (2008)Google Scholar
  11. 11.
    Kass, M., Witkin, A.: Analyzing oriented patterns. Computer Vision, Graphics, and Image Processing 37(3), 362–385 (1987)CrossRefGoogle Scholar
  12. 12.
    Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Transactions on Image Processing 12(6), 661–670 (2003)CrossRefGoogle Scholar
  13. 13.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)CrossRefGoogle Scholar
  14. 14.
    Materka, A., Strzelecki, M.: Texture analysis methods - A review, Technical Report, University of Lodz, Cost B11 Report (1998)Google Scholar
  15. 15.
    Mühlich, M., Aach, T.: A theory of multiple orientation estimation. In: Proc of the 9th European Conference on Computer Vision (ECCV), Graz, Austria (2006)Google Scholar
  16. 16.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  17. 17.
    Ojala, T., Maenpa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex - a new framework for empirical evaluation of texture analysis algorithms. In: Proc. of the 16th International Conference on Pattern Recognition, Quebec, Canada, pp. 701–706 (2002)Google Scholar
  18. 18.
    Petrou, M., Sevilla, P.G.: Image Processing: Dealing with Texture. John Wiley & Sons, Chichester (2006)Google Scholar
  19. 19.
    Zhou, J., Xin, L., Zhang, D.: Scale-orientation histogram for texture image retrieval. Pattern Recognition 36, 1061–1063 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ovidiu Ghita
    • 1
  • Paul F. Whelan
    • 1
  • Dana E. Ilea
    • 1
  1. 1.Vision Systems GroupDublin City UniversityDublin 9Ireland

Personalised recommendations