Generalized Least Squares-Based Parametric Motion Estimation Under Non-uniform Illumination Changes

  • Raúl Montoliu
  • Filiberto Pla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5112)

Abstract

The estimation of parametric global motion has had a significant attention during the last two decades, but despite the great efforts invested, there are still open issues. One of the most important ones is related to the ability to recover large deformation between images in the presence of illumination changes while kipping accurate estimates. In this paper, a Generalized least squared-based motion estimator is used in combination with a dynamic image model where the illumination factors are functions of the localization (x,y) instead of constants, allowing for a more general and accurate image model. Experiments using challenging images have been performed showing that the combination of both techniques is feasible and provides accurate estimates of the motion parameters even in the presence of strong illumination changes between the images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bober, M., Kittler, J.V.: Robust motion analysis. In: IEEE Conf. on Computer vision and Pattern Recognition, pp. 947–952 (1994)Google Scholar
  2. 2.
    Graham, D., Finlayson, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Trans. Pattern Anal. Machine Intell. 23(12), 1338–1350 (2001)CrossRefGoogle Scholar
  4. 4.
    Kim, Y., Martinez, A.M., Kak, A.C.: Robust motion estimation under vaying illumination. Image and Vision Computing 23(4), 365–375 (2004)CrossRefGoogle Scholar
  5. 5.
    Lai, S.-H., Fang, M.: Robust and efficient image alignment with spatially varying illumination models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 02, p. 2167 (1999)Google Scholar
  6. 6.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Montoliu, R., Pla, F.: Generalized least squares-based parametric motion estimation. Technical Report 1/10/2007, University Jaume I (October 2007)Google Scholar
  8. 8.
    Montoliu, R., Pla, F., Klaren, A.: Illumination Intensity, Object Geometry and Highlights Invariance in Multispectral Imaging. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 36–43. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Negahdaripour, S.: Revised definition of optical flow: Integration of radiometric and geometric cues for dynamic scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(9), 961–979 (1998)CrossRefGoogle Scholar
  10. 10.
    Odobez, J.M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. Int. J. Visual Communication and Image Representation 6(4), 348–365 (1995)CrossRefGoogle Scholar
  11. 11.
    Szeliski, R., Coughlan, J.: Spline-based image registration. International Journal of Computer Vision 22(3), 199–218 (1997)CrossRefGoogle Scholar
  12. 12.
    Torr, P.H.S., Zisserman, A.: Mlesac: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Raúl Montoliu
    • 1
  • Filiberto Pla
    • 2
  1. 1.Dept. Arquitectura y Ciéncias de los ComputadoresJaume I UniversityCastellónSpain
  2. 2.Dept. Lenguajes y Sistemas InformáticosJaume I UniversityCastellónSpain

Personalised recommendations