Auto Exposure Control for Multiple-Slope Cameras

  • André Gooßen
  • Marcus Rosenstiel
  • Simon Schulz
  • Rolf-Rainer Grigat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5112)


The dynamic range of natural scenes usually exceeds the dynamic range of imaging sensors by several orders of magnitude. To overcome information loss multiple-slope cameras allow acquisition of images at extended dynamic ranges. However the response curve still has to be adapted to the scene. We present a new auto exposure control for multiple-slope cameras. The proposed method derives an optimum response curve in terms of recorded information. It considers dynamic range expansion as well as the resulting coarsening of quantization. We evaluated our method by simulation and implementation for an actual multiple-slope camera.


Transition Curve High Dynamic Range Imaging Knee Point Simulated Recording Conventional Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    HDRsoft SARL (publisher): HDR images in photography - About Dynamic Range, Tone Mapping and HDR Imaging for Photography (2007)Google Scholar
  2. 2.
    Schulz, S., Grimm, M., Grigat, R.R.: Using brightness histogram to perform optimum auto exposure. WSEAS Transactions on Systems and Control 2, 93–100 (2007)Google Scholar
  3. 3.
    Burghartz, J.N., Graf, H.G., Harendt, C., Klingler, W., Richter, H., Strobel, M.: HDR CMOS imagers and their applications. In: 8th International Conference on Solid-State and Integrated Circuit Technology, pp. 528–531 (2006)Google Scholar
  4. 4.
    Sasaki, M., Mase, M., Kawahito, S., Tadokoro, Y.: A wide-dynamic-range CMOS image sensor based on multiple short exposure-time readout with multiple-resolution column-parallel ADC. Sensors Journal, IEEE 7(1), 151–158 (2007)CrossRefGoogle Scholar
  5. 5.
    Dierks, F.: Sensitivity and image quality of digital cameras. Technical report, Basler AG (2004)Google Scholar
  6. 6.
    EMVA (publisher): EMVA Standard 1288: Standard for Measurement and Presentation of Specifications for Machine Vision Sensors and Cameras. Technical report (2005),
  7. 7.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Industrial Light & Magic (publisher): Technical Introduction to OpenEXR (2006)Google Scholar
  9. 9.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 249–256 (2002)Google Scholar
  10. 10.
    Shimizu, S., Kondo, T., Kohashi, T., Tsuruta, M., Komuro, T.: A new algorithm for exposure control based on fuzzy logic for video cameras. IEEE Transactions on Consumer Electronics 38(3), 617–624 (1992)CrossRefGoogle Scholar
  11. 11.
    Haruki, T., Kikuchi, K.: Video camera system using fuzzy logic. IEEE Transactions on Consumer Electronics 38(3), 624–634 (1992)CrossRefGoogle Scholar
  12. 12.
    Kuno, T., Sugiura, H., Matoba, N.: A new automatic exposure system for digital still cameras. IEEE Transactions on Consumer Electronics 44(1), 192–199 (1998)CrossRefGoogle Scholar
  13. 13.
    Lee, J.S., Jung, Y.Y., Kim, B.S., Ko, S.J.: An advanced video camera system with robust AF, AE, and AWB control. IEEE Transactions on Consumer Electronics 47(3), 694–699 (2001)CrossRefGoogle Scholar
  14. 14.
    Cho, M., Lee, S., Nam, B.D.: The fast auto exposure algorithm based on numerical analysis. In: Proc. of the SPIE Conf. on Sens., Cameras and Appl. for Digital Photography, vol. 2650, pp. 93–99 (1999)Google Scholar
  15. 15.
    Aggarwal, M., Ahuja, N.: Split aperture imaging for high dynamic range. Int. J. Comput. Vision 58(1), 7–17 (2004)CrossRefGoogle Scholar
  16. 16.
    Yamashita, T., Sugawara, M., Mitani, K., Okano, F.: Wide-dynamic-range camera using a novel optical beam splitting system. In: Proc. SPIE, vol. 4669, pp. 82–88 (2002)Google Scholar
  17. 17.
    Nayar, S.K., Mitsunaga, T.: High dynamic range imaging: Spatially varying pixel exposures. In: CVPR, pp. 1472–1479 (2000)Google Scholar
  18. 18.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. Computer Graphics 31, 369–378 (1997)Google Scholar
  19. 19.
    Brajovic, V., Kanade, T.: A sorting image sensor: An example of massively parallel intensity-to-time processing for low-latency computational sensors. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 1638–1643 (1996)Google Scholar
  20. 20.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn., pp. 29–32. Prentice-Hall, Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • André Gooßen
    • 1
  • Marcus Rosenstiel
    • 1
  • Simon Schulz
    • 1
  • Rolf-Rainer Grigat
    • 1
  1. 1.Vision SystemsHamburg University of TechnologyHamburg 

Personalised recommendations