A New Data Normalization Function for Multibiometric Contexts: A Case Study

  • Maria De Marsico
  • Daniel Riccio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5112)


It has been not possible yet to identify a physical or behavioural feature able by itself to identify a person in a way satisfying the acceptability and reliability constraints imposed by real applications. As a consequence the present trend is towards multimodal systems. Data normalization problem is crucial when fusing results from different subsystems. We introduce a new normalization function, the mapping function, able to overcome the limitations of commonly used techniques. In this work we also test it on a real hierarchical system obtained by the novel combination schema of the three different biometries face, ear and fingerprint. Experimental results in the final part of our work provide a positive feedback about assertions within the body of the paper.


biometrics score normalization multimodal systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abate, A.F., Nappi, M., Riccio, D.: Face and Ear: A Bimodal Identification System. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4141. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Bolle, R.M., Connell, J.H., Pananti, S., Ratha, N.K., Senior, A.W.: The Relation Between the ROC Curve and the CMC. In: Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AUTOID 2005), pp. 15–20 (2005)Google Scholar
  3. 3.
    Dorizzi, B., Garcia-Salicetti, S., Allano, L.: Multimodality in Biosecure: Evaluation on Real vs. Virtual Subjects. In: 2006 IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP 2006), Tolouse, vol. 5, pp. 1089–1092 (2006)Google Scholar
  4. 4.
    Fisher, Y.: Fractal Image Compression: Theory and Application. Springer, New York (1994)MATHGoogle Scholar
  5. 5.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. on Circuits and Systems for Video Technology 14, 4–20 (2004)CrossRefGoogle Scholar
  6. 6.
    Jain, A.K., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern recognition 38(2), 2270–2285 (2005)CrossRefGoogle Scholar
  7. 7.
    Phillips, P.J., Moon, H., Rizvi, A.S., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  8. 8.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)CrossRefGoogle Scholar
  9. 9.
    Ross, A., Jain, A.K.: Multimodal Biometrics: An Overview. In: Proceedings. of 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, September 2004, pp. 1221–1224 (2004)Google Scholar
  10. 10.
    Sanderson, C., Paliwal, K.K.: Noise compensation in a person verification system using face and multiple speech features. Pattern Recognition 36(10), 293–302 (2003)Google Scholar
  11. 11.
    TMS320C6713 DSK Technical Reference, DSP Development Systems (2004) Google Scholar
  12. 12.
    Bioscrypt (2007-01-07), http://www.bioscrypt.com
  13. 13.
    Notre Dame Ear Database (2007-01-07), http://www.nd.edu/~cvrl/UNDBiometricsDatabase.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Maria De Marsico
    • 1
  • Daniel Riccio
    • 2
  1. 1.Dipartimento di InformaticaUniversità degli Studi di Roma “La Sapienza” 
  2. 2.Dipartimento di Matematica e InformaticaUniversità di SalernoFisciano (SA) 

Personalised recommendations