Advertisement

Similarity Metrics Analysis for Feature Point Based Retinal Authentication

  • M. Ortega
  • M. G. Penedo
  • C. Mariño
  • M. J. Carreira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5112)

Abstract

Biometrics refer to identity verification of individuals based on some physiologic or behavioural characteristics (face, fingerprint, signature...). The typical authentication process of a person consists in extracting a biometric pattern of him/her and matching it with the stored pattern for the authorized user obtaining a similarity value between patterns. If that similarity is bigger than some threshold the authentication is accepted, otherwise is rejected. Thus, the similarity metrics determine the system ability to successfully classify authentications as authorized or unauthorized. In this work, an analysis of similarity metrics performance is presented for a biometric system in which retinal vessel feature points are used as biometric pattern. The results of the system allow to establish a confidence band for the metric threshold where no errors are obtained for training and test sets.

Keywords

Authentication System Similarity Measure Retinal Images Biometric Pattern Feature point matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A., Hong, L., Pankanti, S., Bolle, R.: An identity authentication system using fingerprints. Proceedings of the IEEE 85(9) (September 1997)Google Scholar
  2. 2.
    Tico, M., Kuosmanen, P.: Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 1009–1014 (2003)CrossRefGoogle Scholar
  3. 3.
    Zunkel, R.: Hand geometry based verification. In: BIOMETRICS: Personal Identification in Networked Society. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  4. 4.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.: Face recognition: A literature survey. Technical report, National Institute of Standards and Technology (2000)Google Scholar
  5. 5.
    Bigüin, J., Chollet, C., Borgefors, G. (eds.): Proceedings of the 1st.International Conference on Audio- and Video-Based Biometric Person Authentication, Crans-Montana, Switzerland (March 1997)Google Scholar
  6. 6.
    Mariño, C., Penedo, M.G., Carreira, M.J., González, F.: Retinal angiography based authentication. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 306–313. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Mariño, C., Penedo, M.G., Penas, M., Carreira, M.J., González, F.: Personal authentication using digital retinal images. Pattern Analysis and Applications 9, 21–33 (2006)CrossRefGoogle Scholar
  8. 8.
    Tan, X., Bhanu, B.: A robust two step approach for fingerprint identification. Pattern Recognition Letters 24, 2127–2134 (2003)CrossRefGoogle Scholar
  9. 9.
    Ortega, M., Mariño, C., Penedo, M.G., Blanco, M., González, F.: Personal authentication based on featue extraction and optica nerve location in digital retinal images. WSEAS Transactions on Computers 5(6), 1169–1176 (2006)Google Scholar
  10. 10.
    López, A., Lloret, D., Serrat, J., Villanueva, J.: Multilocal creasness based on the level set extrinsic curvature. Computer Vision and Image Understanding 77, 111–144 (2000)CrossRefGoogle Scholar
  11. 11.
    López Peña, A., Lumbreras, F., Serrat, J., Villanueva, J.: Evaluation of methods for ridge and valley detection. IEEE Pattern Analysis and machine intelligence 21, 327–335 (1999)CrossRefGoogle Scholar
  12. 12.
    Brown, L.G.: A survey of image registration techniques. ACM Computer Surveys 24(4), 325–376 (1992)CrossRefGoogle Scholar
  13. 13.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vision and Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  14. 14.
    Ryan, N., Heneghan, C., de Chazal, P.: Registration of digital retinal images using landmark correspondence by expectation maximization. Image and Vision Computing 22, 883–898 (2004)CrossRefGoogle Scholar
  15. 15.
    VARIA: Varpa retinal images for authentication, http://www.varpa.es/varia.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Ortega
    • 1
  • M. G. Penedo
    • 1
  • C. Mariño
    • 1
  • M. J. Carreira
    • 2
  1. 1.VARPA Group, Department of Computer ScienceUniversity of A Coruña(Spain)
  2. 2.Department of Electronics and Computer ScienceUniversity of Santiago de Compostela(Spain)

Personalised recommendations