Marine and Industrial Biofouling pp 135-163

Part of the Springer Series on Biofilms book series (BIOFILMS, volume 4)

Surface Modification Approach to Control Biofouling

There are three principal approaches to control biofouling: (1) mechanical detachment of biofoulers if possible; (2) killing or inactivation of biofouling organisms using antibiotics, biocides, cleaning chemicals, etc. and (3) surface modification turning the substrate material into a low-fouling or non-sticking (non-adhesive) one. Such modification usually alters the surface chemical composition and morphology, surface topography and roughness, the hydrophilic/hydrophobic balance, as well as the surface energy and polarity.

In marine applications especially, current non-toxic biofouling control strategies are based mainly on the third approach, i.e., on the idea of creating low-fouling or non-adhesive material surfaces, an approach that includes development of strongly hydrophilic “water-like” bioinert materials. Strongly hydrophobic low-energy surfaces are preferable in industrial and marine biofouling control because of their relative stability in aqueous media and reduced interactions with living cells.

This chapter presents a brief overview of some possibilities for biofouling control by surface engineering. A number of related ideas will be discussed in this chapter, including: (1) the use of protein adsorption as a mediator of bioadhesion and biofoul-ing, (2) physicochemical parameters influencing these phenomena, (3) theoretical aspects of cell/surface interactions, (4) some popular surface modification techniques, and (5) examples of successful biofouling control approaches.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Polymer EngineeringUniversity for Chemical Technology and MetallurgySofiaBulgaria

Personalised recommendations