Advertisement

Abstract

An interpolant for a mutually inconsistent pair of formulas (A,B) is a formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed over the common variables of A and B. An interpolant can be efficiently derived from a refutation of A ∧ B, for certain theories and proof systems. In this tutorial we will cover methods of generating interpolants, and applications of interpolants, including invariant generation and abstraction refinement.

Keywords

Model Check Proof System Invariant Generation Symbolic Model Check Resolution Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Henzinger, T.A., Jhala, R.: Rupak Majumdar, and K. L. McMillan. Abstractions from proofs. In: Principles of Prog. Lang., POPL 2004, pp. 23–244 (2004)Google Scholar
  3. 3.
    Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 6–10. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • K. L. McMillan
    • 1
  1. 1.Cadence Berkeley Labs 

Personalised recommendations