Optimal Insertion of a Segment Highway in a City Metric

  • Matias Korman
  • Takeshi Tokuyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)


Given two sets of points in the plane, we are interested in locating a highway h such that an objective function on the city distance between points of the two sets is minimized (where the city distance is measured with speed v > 1 on a highway and 1 in the underlying metric elsewhere). Extending the results of Ahn et al. ([7]), we consider the option that there are already some built highways. We give a unified approach to this problem to design polynomial-time algorithms for several combinations of objective functions and types of the inserted highway (turnpike or freeway).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., del Río, B.P., Sacristan, V.: Proximity Problems for Time Metrics Induced by the L 1 Metric and Isothetic Networks. In: Proc. Encuentros en Geometría Computacional (2001)Google Scholar
  2. 2.
    Ahn, H.-K., Alt, H., Asano, T., Bae, S.W., Brass, P., Cheong, O., Knauer, C., Na, H.-S., Shin, C.-S., Wolff, A.: Constructing Optimal Highways. In: Computing: The Australian Theory Symposium, vol. 65 (2007)Google Scholar
  3. 3.
    Aicholzer, O., Aurenhammer, F., Palop, B.: Quickest Path, Straight Skeleton and the City Voronoi Diagram. In: ACM Sympos. Comput. Geom., pp. 151–159 (2002)Google Scholar
  4. 4.
    Bae, S.W., Kim, J.-H., Chwa, K.-Y.: Optimal Construction of the City Voronoi Diagram. In: Proc. 17th Annu. Internat. Sympos. Algorithms Comput., pp. 183–192 (2006)Google Scholar
  5. 5.
    Bae, S.W., Chua, K.-Y.: Shortest Paths and Voronoi Diagrams with Transportation Networks under General Distances. In: Proc 16th Annu. Internat. Sympos. Algoritms Comput., pp. 1007–1018 (2005)Google Scholar
  6. 6.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Algorithms and Applications. Springer, Heidelberg (1997)MATHGoogle Scholar
  7. 7.
    Cardinal, J., Langerman, S.: Min-max-min Geometric Facility Location Problems. In: Proc. of the European Workshop on Computational Geometry (2006)Google Scholar
  8. 8.
    Cardinal, J., Collette, S., Hurtado, F., Langerman, S., Palop, B.: Moving Walkways, Escalators, and Elevators. Eprint arXiv:0705.0635 (2007)Google Scholar
  9. 9.
    Hassin, R., Megiddo, N.: Approximation Algorithms for Hitting Objects with Straight Lines. Discrete Applied Mathematics 30(1), 29–42 (1991)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Korman, M., Tokuyama, T.: Optimal Insertion of a Segment Highway in a City Metric. In: Proc. of the European Workshop on Computational Geometry, pp. 189–192 (2008)Google Scholar
  11. 11.
    Kranakis, E., Krizanc, D., Meertens, L.: Link Length of Rectilinear Hamiltonian Tours in Grids. Ars Combinatoria 38, 177–192 (1994)MATHMathSciNetGoogle Scholar
  12. 12.
    Mitchell, J.S.B.: L 1 Shortest Paths among Obstacles in the Plane. Internat. J. Comput. Geom. Appl. 6(3), 309–331 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matias Korman
    • 1
  • Takeshi Tokuyama
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations