(1 + ρ)-Approximation for Selected-Internal Steiner Minimum Tree

  • Xianyue Li
  • Yaochun Huang
  • Feng Zou
  • Donghyun Kim
  • Weili Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)

Abstract

Selected-internal Steiner minimum tree problem is a generalization of original Steiner minimum tree problem. Given a weighted complete graph G = (V,E) with weight function c, and two subsets \(R^{'}\subsetneq R\subseteq V\) with |R − R| ≥ 2, selected-internal Steiner minimum tree problem is to find a Steiner minimum tree T of G spanning R such that any leaf of T does not belong to R. In this paper, suppose c is metric, we obtain a (1 + ρ)-approximation algorithm for this problem, where ρ is the best-known approximation ratio for the Steiner minimum tree problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borchers, A., Du, D.Z.: The k-Steiner Ratio in Graphs. SIAM Journal on Computing 26(3), 857–869 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cheng, X., Du, D.Z.: Steiner Trees in Industry. Kluwer Academic Publishers, Dordrecht, Netherlands (2001)Google Scholar
  3. 3.
    Du, D.Z.: On Component-Size Bounded Steiner Trees. Discrete Applied Mathematics 60, 131–140 (1995)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Du, D.Z., Smith, J.M., Rubinstein, J.H.: Advance in Steriner Tree. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)Google Scholar
  5. 5.
    Foulds, L., Graham, R.: The Steiner Problem in Phylogeny is NP-complete. Advances in Applied Mathematics 3, 43–49 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garey, M., Graham, R., Johnson, D.: The Complexity of Computing Steriner Minimal Tree. SIAM Journal on Applied Mathematics 32, 835–859 (1997)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Garey, M., Johnson, D.: The Rectilinear Steiner Problem is NP-complete. SIAM Journal on Applied Mathematics 32, 826–834 (1977)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Graur, D., Li, W.H.: Fundamentals of Molecular Evolution, 2nd edn. Sinauer Publishers, Sunderland, Massachusetts (2000)Google Scholar
  9. 9.
    Hsieh, S.Y., Yang, S.C.: Approximating the Selected-Internal Steriner Tree. Theoretical Computer Science 381, 288–291 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland, Amsterdam (1992)MATHGoogle Scholar
  11. 11.
    Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Publishers, Dordrecht (1995)MATHGoogle Scholar
  12. 12.
    Korte, B., Prömel, H.J., Steger, A.: Steiner Trees in VLSI-Layouts. In: Korte, et al. (eds.) Paths, Flows and VLSI-Layout. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Lu, C.L., Tang, C.Y., Lee, R.C.T.: The Full Steiner Tree Problem. Theoretical Computer Science 306, 55–67 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Robins, G., Zelikovsky, A.: Improved Steiner Tree Approximation in Graphs. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 770–779 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xianyue Li
    • 1
  • Yaochun Huang
    • 2
  • Feng Zou
    • 2
  • Donghyun Kim
    • 2
  • Weili Wu
    • 2
  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouP.R. China
  2. 2.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations