Advertisement

Dimensions of Points in Self-similar Fractals

  • Jack H. Lutz
  • Elvira Mayordomo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)

Abstract

We use nontrivial connections between the theory of computing and the fine-scale geometry of Euclidean space to give a complete analysis of the dimensions of individual points in fractals that are computably self-similar.

Keywords

Iterate Function System Kolmogorov Complexity Contraction Ratio Annual IEEE Symposium Constructive Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective Strong Dimension in Algorithmic Information and Computational Complexity. SIAM Journal on Computing 37, 671–705 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Barnsley, M.F.: Fractals Everywhere. Morgan Kaufmann Pub., San Francisco (1993)zbMATHGoogle Scholar
  3. 3.
    Billingsley, P.: Hausdorff Dimension in Probability Theory. Illinois J. Math 4, 187–209 (1960)MathSciNetGoogle Scholar
  4. 4.
    Brattka, V., Weihrauch, K.: Computability on Subsets of Euclidean Space i: Closed and Compact Subsets. Theoretical Computer Science 219, 65–93 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Braverman, M.: On the Complexity of Real Functions. In: Proceedings of the Forty-Sixth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 155–164 (2005)Google Scholar
  6. 6.
    Braverman, M., Cook, S.: Computing over the Reals: Foundations for Scientific Computing. Notices of the AMS 53(3), 1024–1034 (2006)MathSciNetGoogle Scholar
  7. 7.
    Braverman, M., Yampolsky, M.: Constructing Non-computable Julia Sets. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 709–716 (2007)Google Scholar
  8. 8.
    Cai, J., Hartmanis, J.: On Hausdorff and Topological Dimensions of the Kolmogorov Complexity of the Real Line. Journal of Computer and Systems Sciences 49, 605–619 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cajar, H.: Billingsley Dimension in Probability Spaces. Lecture Notes in Mathematics. Springer, Heidelberg (1982)Google Scholar
  10. 10.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., New York (1991)zbMATHGoogle Scholar
  11. 11.
    Edgar, G.A.: Integral, Probability, and Fractal Measures. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  12. 12.
    Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  13. 13.
    Falconer, K.: Dimensions and Measures of Quasi Self-similar Sets. Proc. Amer. Math. Soc. 106, 543–554 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & sons, Chichester (2003)zbMATHGoogle Scholar
  15. 15.
    Fernau, H., Staiger, L.: Iterated Function Systems and Control Languages. Information and Computation 168, 125–143 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fortnow, L., Lee, T., Vereshchagin, N.: Kolmogorov Complexity with Error. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 137–148. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Grzegorczyk, A.: Computable Functionals. Fundamenta Mathematicae 42, 168–202 (1955)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Gu, X., Lutz, J.H., Mayordomo, E.: Points on Computable Curves. In: Proceedings of the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 469–474 (2006)Google Scholar
  19. 19.
    Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded Geometries, Fractals, and Low-Distortion Embeddings. In: Proceedings of the Forty-Fourth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 534–543 (2003)Google Scholar
  20. 20.
    Hertling, P.: Is the Mandelbrot Set Computable? Mathematical Logic Quarterly 51, 5–18 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hitchcock, J.M.: Correspondence Principles for Effective Dimensions. Theory of Computing Systems 38, 559–571 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kamo, H., Kawamura, K.: Computability of Self-Similar Sets. Math. Log. Q. 45, 23–30 (1999)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)zbMATHGoogle Scholar
  24. 24.
    Lacombe, D.: Extension de la Notion de Fonction Recursive aux Fonctions d’une ow Plusiers Variables Reelles and other Notes. Comptes Rendus 240, 2478–2480; 241, 13–14; 151–153, 1250–1252 (1955)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications. 2nd edn. Springer, Berlin (1997)zbMATHGoogle Scholar
  26. 26.
    Lutz, J.H.: The Dimensions of Individual Strings and Sequences. Information and Computation 187, 49–79 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lutz, J.H., Weihrauch, K.: Connectivity Properties of Dimension Level Sets. In: Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (2007)Google Scholar
  28. 28.
    Martin, D.A.: Classes of Recursively Enumerable Sets and Degrees of Unsolvability. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 12, 295–310 (1966)Google Scholar
  29. 29.
    Moran, P.A.: Additive Functions of Intervals and Hausdorff Dimension. Proceedings of the Cambridge Philosophical Society 42, 5–23 (1946)CrossRefGoogle Scholar
  30. 30.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  31. 31.
    Rettinger, R., Weihrauch, K.: The Computational Complexity of some Julia Sets. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (SOTC 2003), pp. 177–185 (2003)Google Scholar
  32. 32.
    Staiger, L.: A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal prediction. Theory of Computing Systems 31, 215–229 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Vereshchagin, K., Vitanyi, P.M.B.: Algorithmic Rate-Distortion Function. In: Proceedings IEEE Intn’l Symp. Information Theory (2006)Google Scholar
  34. 34.
    Weihrauch, K.: Computable Analysis. An Introduction. Springer, Heidelberg (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jack H. Lutz
    • 1
  • Elvira Mayordomo
    • 2
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA
  2. 2.Departamento de Informática e Ingeniería de SistemasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations