Dimensions of Points in Self-similar Fractals

  • Jack H. Lutz
  • Elvira Mayordomo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)

Abstract

We use nontrivial connections between the theory of computing and the fine-scale geometry of Euclidean space to give a complete analysis of the dimensions of individual points in fractals that are computably self-similar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective Strong Dimension in Algorithmic Information and Computational Complexity. SIAM Journal on Computing 37, 671–705 (2007)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Barnsley, M.F.: Fractals Everywhere. Morgan Kaufmann Pub., San Francisco (1993)MATHGoogle Scholar
  3. 3.
    Billingsley, P.: Hausdorff Dimension in Probability Theory. Illinois J. Math 4, 187–209 (1960)MathSciNetGoogle Scholar
  4. 4.
    Brattka, V., Weihrauch, K.: Computability on Subsets of Euclidean Space i: Closed and Compact Subsets. Theoretical Computer Science 219, 65–93 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Braverman, M.: On the Complexity of Real Functions. In: Proceedings of the Forty-Sixth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 155–164 (2005)Google Scholar
  6. 6.
    Braverman, M., Cook, S.: Computing over the Reals: Foundations for Scientific Computing. Notices of the AMS 53(3), 1024–1034 (2006)MathSciNetGoogle Scholar
  7. 7.
    Braverman, M., Yampolsky, M.: Constructing Non-computable Julia Sets. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (STOC 2007), pp. 709–716 (2007)Google Scholar
  8. 8.
    Cai, J., Hartmanis, J.: On Hausdorff and Topological Dimensions of the Kolmogorov Complexity of the Real Line. Journal of Computer and Systems Sciences 49, 605–619 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cajar, H.: Billingsley Dimension in Probability Spaces. Lecture Notes in Mathematics. Springer, Heidelberg (1982)Google Scholar
  10. 10.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., New York (1991)MATHGoogle Scholar
  11. 11.
    Edgar, G.A.: Integral, Probability, and Fractal Measures. Springer, Heidelberg (1998)MATHGoogle Scholar
  12. 12.
    Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)MATHGoogle Scholar
  13. 13.
    Falconer, K.: Dimensions and Measures of Quasi Self-similar Sets. Proc. Amer. Math. Soc. 106, 543–554 (1989)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & sons, Chichester (2003)MATHGoogle Scholar
  15. 15.
    Fernau, H., Staiger, L.: Iterated Function Systems and Control Languages. Information and Computation 168, 125–143 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fortnow, L., Lee, T., Vereshchagin, N.: Kolmogorov Complexity with Error. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 137–148. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Grzegorczyk, A.: Computable Functionals. Fundamenta Mathematicae 42, 168–202 (1955)MATHMathSciNetGoogle Scholar
  18. 18.
    Gu, X., Lutz, J.H., Mayordomo, E.: Points on Computable Curves. In: Proceedings of the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 469–474 (2006)Google Scholar
  19. 19.
    Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded Geometries, Fractals, and Low-Distortion Embeddings. In: Proceedings of the Forty-Fourth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 534–543 (2003)Google Scholar
  20. 20.
    Hertling, P.: Is the Mandelbrot Set Computable? Mathematical Logic Quarterly 51, 5–18 (2005)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hitchcock, J.M.: Correspondence Principles for Effective Dimensions. Theory of Computing Systems 38, 559–571 (2005)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kamo, H., Kawamura, K.: Computability of Self-Similar Sets. Math. Log. Q. 45, 23–30 (1999)MATHMathSciNetGoogle Scholar
  23. 23.
    Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)MATHGoogle Scholar
  24. 24.
    Lacombe, D.: Extension de la Notion de Fonction Recursive aux Fonctions d’une ow Plusiers Variables Reelles and other Notes. Comptes Rendus 240, 2478–2480; 241, 13–14; 151–153, 1250–1252 (1955)MATHMathSciNetGoogle Scholar
  25. 25.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications. 2nd edn. Springer, Berlin (1997)MATHGoogle Scholar
  26. 26.
    Lutz, J.H.: The Dimensions of Individual Strings and Sequences. Information and Computation 187, 49–79 (2003)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Lutz, J.H., Weihrauch, K.: Connectivity Properties of Dimension Level Sets. In: Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (2007)Google Scholar
  28. 28.
    Martin, D.A.: Classes of Recursively Enumerable Sets and Degrees of Unsolvability. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 12, 295–310 (1966)Google Scholar
  29. 29.
    Moran, P.A.: Additive Functions of Intervals and Hausdorff Dimension. Proceedings of the Cambridge Philosophical Society 42, 5–23 (1946)CrossRefGoogle Scholar
  30. 30.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)MATHGoogle Scholar
  31. 31.
    Rettinger, R., Weihrauch, K.: The Computational Complexity of some Julia Sets. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (SOTC 2003), pp. 177–185 (2003)Google Scholar
  32. 32.
    Staiger, L.: A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal prediction. Theory of Computing Systems 31, 215–229 (1998)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Vereshchagin, K., Vitanyi, P.M.B.: Algorithmic Rate-Distortion Function. In: Proceedings IEEE Intn’l Symp. Information Theory (2006)Google Scholar
  34. 34.
    Weihrauch, K.: Computable Analysis. An Introduction. Springer, Heidelberg (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jack H. Lutz
    • 1
  • Elvira Mayordomo
    • 2
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA
  2. 2.Departamento de Informática e Ingeniería de SistemasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations