A New Approach to Interactive Visual Search with RBF Networks Based on Preference Modelling

  • Paweł Rotter
  • Andrzej M. J. Skulimowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5097)


In this paper we propose a new method for image retrieval with relevance feedback based on eliciting preferences from the decision-maker acquiring visual information from an image database. The proposed extension of the common approach to image retrieval with relevance feedback allows it to be applied to objects with non-homogenous colour and texture. This has been accomplished by the algorithms, which model user queries by an RBF neural network. As an example of application of this approach, we have used a content-based search in an atlas of species. An experimental comparison with the commonly used content-based image retrieval approach is presented.


Content-based image retrieval relevance feedback interactive multimedia retrieval RBF networks distance-based matching preference modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1), 262–282 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Rui, Y., Huang, T.S., Mehrotra, S., Ortega, M.: A Relevance Feedback Architecture in Content-based Multimedia Information Retrieval Systems. In: Proc. of IEEE Workshop on Content-based Access of Image and Video Libraries, in conjunction with CVPR 1997, Puerto Rico, June 20, 1997, pp. 82–89 (1997)Google Scholar
  3. 3.
    Ishikawa, Y., Subramanya, R., Faloutsos, C.: MindReader: Querying databases through multiple examples. In: 24th VLDB Conference, New York (1998)Google Scholar
  4. 4.
    Smith, J.R., Chang, S.F.: VisualSEEk: a fully automated content-based image query system. In: Proc. ACM Intern. Conf. Multimedia, Boston, MA (May 1996)Google Scholar
  5. 5.
    Faloutsos, C., et al.: Efficient and Effective Querying by Image Content. Journal of Intelligent Information Systems 3(3-4) (July 1994)Google Scholar
  6. 6.
    Chuang, S.C., et al.: A Multiple-Instance Neural Networks Based Image Content Retrieval System. In: Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC) (2006)Google Scholar
  7. 7.
    Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3, 246–257 (1991)CrossRefGoogle Scholar
  8. 8.
    Cheng, P.C., Chien, B.C., Ke, H.R., Yang, W.P.: A two-level relevance feedback mechanism for image retrieval. In: Expert Systems with Applications (to appear, 2008)Google Scholar
  9. 9.
    Doulamis, N., Doulamis, A.: Evaluation of relevance feedback schemes in content-based in retrieval systems. Signal Processing: Image Communication 21(4), 334–357 (2006)CrossRefGoogle Scholar
  10. 10.
    Rui, Y., Huang, T.S., Mehrotra, S.: Relevance Feedback Techniques in Interactive Content-Based Image Retrieval. In: Proc. of IS&T and SPIE Storage and Retrieval of Image and Video Databases VI, San Jose, CA, January 24-30, 1998, pp. 25–36 (1998)Google Scholar
  11. 11.
    Skulimowski, A.M.J., Rotter, P.: Preference elicitation, reference sets and relevance feedback. In: 65th Meeting of the European Working Group Multiple Criteria Decision Aid, Poznan, Poland, April 12-14 (2007)Google Scholar
  12. 12.
    Rotter, P.: Application of multicriteria optimization methods in image interpretation (in Polish). PhD Thesis, AGH-University of Science and Technology, Krakow (2004)Google Scholar
  13. 13.
    Skulimowski, A.M.J.: Methods of Multicriteria Decision Support Based on Reference Sets. In: Caballero, R., Ruiz, F., Steuer, R. (eds.) Advances in Multiple Objective and Goal Programming. Lecture Notes in Econ. and Math. Systems, vol. 455, pp. 282–290. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Lew, M.S.: Principles of Visual Information Retrieval. Springer, London (2001)zbMATHGoogle Scholar
  15. 15.
    Müller, H., Müller, W., Marchand-Maillet, S., Squire, D.M.: Strategies for positive and negative relevance feedback in image retrieval. In: Proc. of the International Conference on Pattern Recognition (ICPR 2000), Barcelona, Spain, September 3-8, 2000. Computer Vision and Image Analysis, vol. 1, pp. 1043–1046 (2000)Google Scholar
  16. 16.
    Rocchio, J.J.: Relevance Feedback in Information Retrieval. In: Salton, G. (ed.) The SMART Retrieval System – Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall, Englewood Cliffs (1971)Google Scholar
  17. 17.
    Ma, W.Y., Manjunath, B.S.: Edge flow: a framework of boundary detection and image segmentation. In: Proc. IEEE International Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997, pp. 744–749 (1997)Google Scholar
  18. 18.
    Tadeusiewicz, R.: Intelligent Web mining for semantically adequate images. In: Węgrzyn-Wolska, K.M., Szczepaniak, P.S. (eds.) Advances in intelligent Web mastering : Proceedings of the 5th Atlantic Web Intelligent Conference – AWIC 2007, Fontainebleau, France, June 25–27, 2007. Advances in Soft Computing, vol. 43, pp. 3–10. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paweł Rotter
    • 1
    • 2
  • Andrzej M. J. Skulimowski
    • 2
  1. 1.European Commission, DG Joint Research Centre, Institute for Prospective Technological Studies, Seville, Spain, on leave from (2) 
  2. 2.Chair of Automatic ControlAGH-University of Science and TechnologyKrakowPoland

Personalised recommendations