Advertisement

Segmentation of Ultrasound Imaging by Fuzzy Fusion: Application to Venous Thrombosis

  • Mounir Dhibi
  • Renaud Debon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5097)

Abstract

In this work we propose a new method for ultrasound imaging segmentation in objective to help doctors and specialists to interpret anatomical structure. The proposed method is based on fuzzy fusion theory in objective to extract the venous thrombosis contour in ultrasound images acquired in vivo case. The first obtained results by optimization algorithm, adapted to our particular problem case are presented.

Keywords

Venous Thrombosis Ultrasound Image Abdominal Aortic Aneurysm Active Contour Carotid Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bressollette, L., Guias, B., Pineau, P., Oger, E., Morin, V., et al.: Three-dimensional reconstruction calibrated with ultrasonographic images. Application to the measurement of clot volume in vitro. J. Mal. Vasc. 26(2), 92–96 (2001)Google Scholar
  2. 2.
    Debon, R., Solaiman, B., Cauvin, J.M., Roux, C.: Aorta detection on endosonographic image sequence by a Hough transform based architecture. In: Proc. Conf. IEEE Eng. Med. Biol. Soc. (1999)Google Scholar
  3. 3.
    Dhibi, M., Puentes, J., Clmence, P., Bressolette, L., Guias, B., Solaiman, B.: Venous thrombosis contour detection in ultrasound image using the snake method. In: Proc. Conf. IEEE SETIT, pp. 43–46 (2005)Google Scholar
  4. 4.
    Dhibi, M., Solaiman, B., Bressolette, L.: Ellipse fitting for venous thrombosis contour detection in ultrasound imaging. In: Proc. Conf. SPIE. Medical Imaging (2007)Google Scholar
  5. 5.
    Dhibi, M., Puentes, J., Bressollette, L., Guias, B., Solaiman, S.: Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 4002–4005 (2005)Google Scholar
  6. 6.
    Landry, A., Spence, J.D., Fenster, A.: Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke 35, 864–869 (2004)CrossRefGoogle Scholar
  7. 7.
    Salvador, A., Maingourd, Y., Fu, S.: Optimisation of an Edge Detection Algorithm for Echocardiographic Images. In: Proc. IEEE Eng. Med. Biol. Soc., pp. 1188–1191 (2003)Google Scholar
  8. 8.
    Rabhi, A., Adel, M., Bourennane, S.: Segmentation of ultrasound images using geodesic active contours. Ultrasound in Med. Bio. 27(1), 8–18 (2006)Google Scholar
  9. 9.
    Ravhon, R., Adam, D., Zelmanovitch, L.: Validation of ultrasonic image boundary recognition in abdominal aortic aneurysm. IEEE Trans. Med. Imaging 20(8), 751–763 (2001)CrossRefGoogle Scholar
  10. 10.
    Shankar, P.M., Forsberg, F., Lown, L.: Statistical modelling of atherosclerotic plaque in carotid B mod images- A feasibility study. Ultrasound in Med. Biol. 29(9), 1305–1309 (2003)CrossRefGoogle Scholar
  11. 11.
    Solaiman, B., Debon, R., Roux, C.: Information fusion: application to data and model fusion for ultrasound image segmentation. Special Issue of IEEE-Trans. on Biom. Eng. 4(10), 1171–1175 (1999)CrossRefGoogle Scholar
  12. 12.
    Weickert, J.: Anisotropic diffusion in image processing, Ph.D. thesis, Dept. of Mathematics, University of Kaiserslautern (January 1996)Google Scholar
  13. 13.
    Wilhjelm, J.E., et al.: Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: Correlation with visual classification and histological examination. IEEE. Trans. Med. Imag. 17(6), 910–922 (1998)CrossRefGoogle Scholar
  14. 14.
    Zadeh, L.A.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mounir Dhibi
    • 1
  • Renaud Debon
    • 1
  1. 1.ENST Bretagne, ITI, CS83818 Brest CedexBrest cedex-3France

Personalised recommendations