Advertisement

Improving Evolutionary Algorithms with Scouting: High–Dimensional Problems

  • Konstantinos Bousmalis
  • Jeffrey O. Pfaffmann
  • Gillian M. Hayes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5097)

Abstract

Evolutionary Algorithms (EAs) are common optimization techniques based on the concept of Darwinian evolution. During the search for the global optimum of a search space, a traditional EA will often become trapped in a local optimum. The Scouting-Inspired Evolutionary Algorithms (SEAs) are a recently–introduced family of EAs that use a cross–generational memory mechanism to overcome this problem and discover solutions of higher fitness. The merit of the SEAs has been established in previous work with a number of two and three-dimensional test cases and a variety of configurations. In this paper, we will present two approaches to using SEAs to solve high–dimensional problems. The first one involves the use of Locality Sensitive Hashing (LSH) for the repository of individuals, whereas the second approach entails the use of scouting–driven mutation at a certain rate, the Scouting Rate. We will show that an SEA significantly improves the equivalent simple EA configuration with higher–dimensional problems in an expeditious manner.

Keywords

Evolutionary Algorithm Fitness Level Generation Generation Ball Tree Neighbor Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andoni, A.: Direct, unpublished correspondence (July 2007)Google Scholar
  2. 2.
    Andoni, A., Indyk, P.: E 2 LSH 0.1 User Manual, June 21 2005. MIT, Cambridge (2005)Google Scholar
  3. 3.
    Andoni, A., Indyk, P.: Near-optimal hashing algorithms for near neighbor problem in high dimensions. In: Proceedings of the Symposium on Foundations of Computer Science–FOCS 2006, pp. 459–468 (2006)Google Scholar
  4. 4.
    Bousmalis, K., Hayes, G.M., Pfaffmann, J.O.: Improving evolutionary algorithms with scouting. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.: GNU Scientific Library Reference Manual. Network Theory Ltd., Bristol (2003)Google Scholar
  6. 6.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases, September 07-10 1999, pp. 518–529 (1999)Google Scholar
  7. 7.
    Liu, T., Moore, W., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of Neural Information Processing Systems, pp. 825–832 (2004)Google Scholar
  8. 8.
    Lüscher, M.: A portable high-quality random number generator for lattice field theory calculations. In: Computer Physics Communications, vol. 79, pp. 1000–1110 (1994)Google Scholar
  9. 9.
    Datar, M., Indyk, P., Immorlica, N., Mirrokni, V.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Symposium on Computational Geometry (2004)Google Scholar
  10. 10.
    Matsumaru, N., Colombano, S., Zauner, K.P.: Scouting enzyme behavior. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) 2002 World Congress on Computational Intelligence, Honolulu, Hawaii, 12-17 May 2002, pp. 19–24. IEEE, Piscataway (2002)Google Scholar
  11. 11.
    Matsumaru, N., Centler, F., Zuner, K.P., Dittrich, P.: Self-adaptive-scouting autonomous experimentation for systems biology. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 52–62. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Matsumoto, M., Nishimura, T.: Mersenne twister: A 6234-dimensionally equidistributed uniform pseudo-random number generator. In: ACM Transactions on Modeling and Computer Simulation, vol. 8, pp. 3–30 (1998)Google Scholar
  13. 13.
    Omohundro, S.M.: Five balltree construction algorithms, November 20 1989. International Computer Science Institute, Berkeley (1989)Google Scholar
  14. 14.
    Pfaffmann, J.O., Zauner, K.P.: Scouting context-sensitive components. In: Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S. (eds.) The Third NASA/DoD Workshop on Evolvable Hardware-EH 2001, 12-14 July 2001, pp. 14–20. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  15. 15.
    Pfaffmann, J.O., Bousmalis, K., Colombano, S.: A scouting-inspired evolutionary algorithm. In: Proceedings of the 2004 Congress on Evolutionary Computation–CEC 2004, Portland, OR, June 16-19, 2004, vol. 2, pp. 1706–1712 (2004)Google Scholar
  16. 16.
    Schmidt, M., Michalewicz, Z.: Test-case generator tcg-2 for nonlinear parameter optimization. In: Deb, K., Rudolph, G., Yao, X., Lutton, E., Guervos, J.J.M., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 539–548. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. In: Information Processing Letters, number 40, pp. 175–179 (November 1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Konstantinos Bousmalis
    • 1
  • Jeffrey O. Pfaffmann
    • 2
  • Gillian M. Hayes
    • 3
  1. 1.School of InformaticsThe University of EdinburghEdinburghUK
  2. 2.Department of Computer ScienceLafayette CollegeEastonUSA
  3. 3.Institute of Perception, Action and Behavior(IPAB), School of InformaticsThe University of EdinburghEdinburghUK

Personalised recommendations