A New Approach to Creating Multisegment Fuzzy Systems

  • Artur Starczewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5097)


Presented paper shows a new approach to creating a fuzzy system based on an exclusive use of clustering algorithms, which determine the value of necessary parameters. The applied multisegment fuzzy system functions as a classifier. Each segment makes an independent fuzzy system with a defined knowledge base and uses singleton fuzzification, as well as fuzzy inference with product operation as the Cartesian product and well-matched membership functions. Defuzzification method is not used. Only the rule-firing level must be analysed and its value suffices to determine the class. The use of clustering algorithms has allowed a qualification of the number of rules in the base of fuzzy rules for each independent segment, as well as a specification of the centers of fuzzy sets used in the given rules. The calculated parameters have proved precise, so that no additional methods have been applied to correct their values. This procedure greatly simplifies the creation of a fuzzy system. The constructed fuzzy system has been tested on medical data that come from the Internet. In the future, those systems may help doctors with their everyday work.


Membership Function Cluster Algorithm Input Vector Fuzzy System Fuzzy Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, K.P., Mangasarian, O.L.: Robust linear programming discrimination of two linearly inseparable sets. In: Optimization Methods and Software, vol. 1, pp. 23–34. Gordon & Breach Science Publishers (1992)Google Scholar
  2. 2.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)Google Scholar
  3. 3.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  4. 4.
    Jang, R.J.S., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1997)Google Scholar
  5. 5.
    Kuncheva, L.I.: Fuzzy Classifier Design. A Springer-Verlag Company, Heidelberg (2000)zbMATHGoogle Scholar
  6. 6.
    Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)Google Scholar
  7. 7.
    Mertez, C.J., Murphy, P.M.: UCI repository of machine learning databases,
  8. 8.
    Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. John Wiley & Sons, Chichester (1997)Google Scholar
  9. 9.
    Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Research Studies Press, London (1989)zbMATHGoogle Scholar
  10. 10.
    Rutkowska, D., Starczewski, A.: Fuzzy inference neural networks and their applications to medical diagnosis. In: Szczepaniak, P.S., Lisboa, P.J.G., Kacprzyk, J. (eds.) Fuzzy Systems in Medicine, pp. 503–518. Physica-Verlag, A Springer Verlag Company, Heidelberg (2000)Google Scholar
  11. 11.
    Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Physica-Verlag, A Springer Verlag Company, Heidelberg (2002)zbMATHGoogle Scholar
  12. 12.
    Starczewski, A., Rutkowska, D.: New hierarchical structure of neuro-fuzzy systems. In: Proc. 5th Conference on Neural Networks and Soft Computing, Zakopane, Poland, pp. 383–388 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Artur Starczewski
    • 1
  1. 1.Department of Computer EngineeringCzęstochowa University of TechnologyCzęstochowaPoland

Personalised recommendations