Advertisement

From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier

  • Marcin Korytkowski
  • Leszek Rutkowski
  • Rafał Scherer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5097)

Abstract

Neuro-fuzzy systems show very good performance and the knowledge comprised within their structure is easily interpretable. To further improve their accuracy they can be combined into ensembles. In the paper we combine specially modified Mamdani neuro-fuzzy systems into an AdaBoost ensemble. The proposed modification improves the interpretability of knowledge by allowing merging the subsystems rule bases into one knowledge base. Simulations on two benchmarks shows excellent performance of the modified neuro-fuzzy systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc., New York (1995)Google Scholar
  2. 2.
    Bezdek, J.C., Pal, S.K.: Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)Google Scholar
  3. 3.
    Bezdek, J., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Press, Norwell (1999)zbMATHGoogle Scholar
  4. 4.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
  5. 5.
    Breiman, L.: Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California (1997)Google Scholar
  6. 6.
    Czogała, E., Łȩski, J.: Fuzzy and Neuro Fuzzy Intelligent Systems. Physica Verlag, Heidelberg (2000)Google Scholar
  7. 7.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2000)Google Scholar
  8. 8.
    Konar, A.: Computational Intelligence. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  9. 9.
    Kuncheva, L.I.: Fuzzy Classifier Design. Physica Verlag, Heidelberg (2000)zbMATHGoogle Scholar
  10. 10.
    Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms. John Wiley & Sons, Chichester (2004)zbMATHGoogle Scholar
  11. 11.
    Łȩski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math. Comput. Sci. 13(2), 215–223 (2003)MathSciNetGoogle Scholar
  12. 12.
    Meir., R., Ratsch, G.: An Introduction to Boosting and Leveraging. Advanced Lectures on Machine Learning (2003)Google Scholar
  13. 13.
    Korytkowski, M., Rutkowski, L., Scherer, R.: On Combining Backpropagation with Boosting. In: 2006 International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada (2006)Google Scholar
  14. 14.
    Łȩski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math. Comput. Sci. 13(2), 215–223 (2003)MathSciNetGoogle Scholar
  15. 15.
    Rutkowski, R.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)zbMATHGoogle Scholar
  16. 16.
    Schapire, R.E.: A brief introduction to boosting. In: Proc. of the Sixteenth International Joint Conference on Artificial Intelligence (1999)Google Scholar
  17. 17.
    Świniarski, R.W.: Rough Sets Methods in Feature Reduction and Classification. Int. J. Appl. Math. Comput. Sci. 11(3), 565–582 (2001)MathSciNetGoogle Scholar
  18. 18.
    Wang, L.-X.: Adaptive Fuzzy Systems And Control. PTR Prentice Hall, Englewood Cliffs (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marcin Korytkowski
    • 1
    • 2
  • Leszek Rutkowski
    • 1
    • 3
  • Rafał Scherer
    • 1
    • 3
  1. 1.Department of Computer EngineeringCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.Olsztyn Academy of Computer Science and ManagementOlsztynPoland
  3. 3.Department of Artificial IntelligenceAcademy of Humanities and Economics in LodzŁódźPoland

Personalised recommendations