Hierarchical Decision Making in Multi-agent Systems Using Answer Set Programming

  • Davy Van Nieuwenborgh
  • Marina De Vos
  • Stijn Heymans
  • Dirk Vermeir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4371)

Abstract

We present a multi-agent formalism based on extended answer set programming. The system consists of independent agents connected via a communication channel, where knowledge and beliefs of each agent are represented by a logic program. When presented with an input set of literals from its predecessor, an agent computes its output as an extended answer set of its program enriched with the input, carefully eliminating contradictions that might occur.

It turns out that while individual agents are rather simple, the interaction strategy makes the system quite expressive: essentially a hierarchy of a fixed number of agents n captures the complexity class \({\sum^{P}_{n}}\), i.e. the n-th level of the polynomial hierarchy. Furthermore, unbounded hierarchies capture the polynomial hierarchy \({\mathcal{PH}}\). This makes the formalism suitable for modelling complex applications of MAS, for example cooperative diagnosis. Furthermore, such systems can be realized by implementing an appropriate control strategy on top of existing solvers such as dlv and smodels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Logic-based artificial intelligence, pp. 257–279. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  3. 3.
    Brain, M., Crick, T., De Vos, M., Fitch, J.: Toast: Applying answer set programming to superoptimisation. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 270–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Brewka, G., Niemela, I., Syrjanen, T.: Implementing ordered disjunction using answer set solvers for normal programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 444–455. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 867–872. Morgan Kaufmann, San Francisco (2003)Google Scholar
  6. 6.
    Buccafurri, F., Caminiti, G.: A social semantics for multi-agent systems. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 317–329. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Buccafurri, F., Gottlob, G.: Multiagent compromises, joint fixpoints, and stable models. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 561–585. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive datalog. In: Proceedings of the 4th International Conference on Logic Programming (LPNMR ’97), pp. 2–17 (1997)Google Scholar
  9. 9.
    Ciampolini, A., Torroni, P.: Using abductive logic agents for modeling the judicial evaluation of crimimal evidence. Applied Artificial Intelligence 18, 251–275 (2004)CrossRefGoogle Scholar
  10. 10.
    Cliffe, O., De Vos, M., Padget, J.: Specifying and analysing agent-based social institutions using answer set programming. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Organizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp. 99–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Costantini, S., Tocchio, A.: Context-based Commmonsense Reasoning in the DALI Logic Programmming Language. In: Blackburn, P., Ghidini, C., Turner, R.M., Giunchiglia, F. (eds.) CONTEXT 2003. LNCS, vol. 2680, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  13. 13.
    De Vos, M.: Implementing Ordered Choice Logic Programming using Answer Set Solvers. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 59–77. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    De Vos, M., Crick, T., Padget, J., Brain, M., Cliffe, O., Needham, J.: A Multi-agent Platform using Ordered Choice Logic Programming. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    De Vos, M., Vermeir, D.: Choice Logic Programs and Nash Equilibria in Strategic Games. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 266–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    De Vos, M., Vermeir, D.: Extending Answer Sets for Logic Programming Agents (Special Issue on Computational Logic in Multi-Agent Systems). Annals of Mathematics and Artifical Intelligence 42(1–3), 103–139 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Communications 12(1-2), 99–111 (1999)MathSciNetGoogle Scholar
  18. 18.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: The DLVk planning system. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 541–544. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the Association for Computing Machinery 42(1), 3–42 (1995)MathSciNetMATHGoogle Scholar
  20. 20.
    Eiter, T., Gottlob, G., Gurevich, Y.: Normal forms for second-order logic over finite structures, and classification of np optimization problems. Annals of Pure and Applied Logic 78(1-3), 111–125 (1996)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on Database Systems 22(3), 364–418 (1997)CrossRefGoogle Scholar
  22. 22.
    Eiter, T., Polleres, A.: Towards automated integration of guess and check programs in answer set programming. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning. LNCS (LNAI), vol. 2923, pp. 100–113. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Endriss, U., Maudet, N., Sadri, F., Toni, F.: Logic-based agent communication protocols. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 91–107. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Faber, W., Pfeifer, G.: dlv homepage, http://www.dbai.tuwien.ac.at/proj/dlv/
  25. 25.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  26. 26.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Hierarchical decision making by autonomous agents. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 44–56. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)MATHGoogle Scholar
  28. 28.
  29. 29.
    Leite, J.A., Alferes, J.J., Pereira, L.M.: Minerva - a dynamic logic programming agent architecture. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 141–157. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Lifschitz, V.: Answer set programming and plan generation. Journal of Artificial Intelligence 138(1-2), 39–54 (2002)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  32. 32.
  33. 33.
    Sakama, C., Inoue, K.: Coordination between logical agents. In: Leite, J.A., Torroni, P. (eds.) Computational Logic in Multi-Agent Systems. LNCS (LNAI), vol. 3487, pp. 161–177. Springer, Heidelberg (2005)Google Scholar
  34. 34.
    Simons, P.: smodels homepage, http://www.tcs.hut.fi/Software/smodels/
  35. 35.
  36. 36.
    Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, Springer, Heidelberg (1999)Google Scholar
  37. 37.
    Stockmeyer, L., Meyer, A.: Word problems requiring exponential time. In: Proceedings of the 5th ACM Symposium on Theory of Computing (STOC ’73), pp. 1–9. ACM Press, New York (1973)CrossRefGoogle Scholar
  38. 38.
    Van Nieuwenborgh, D., De Vos, M., Heymans, S., Vermeir, D.: Hierarchical decision making in multi-agent systems using answer set programming. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science (2005)Google Scholar
  39. 39.
    Van Nieuwenborgh, D., Heymans, S., Vermeir, D.: Approximating extended answer sets. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), IOS Press, Amsterdam (2006)Google Scholar
  40. 40.
    Van Nieuwenborgh, D., Heymans, S., Vermeir, D.: On programs with linearly ordered multiple preferences. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 180–194. Springer, Heidelberg (2004)Google Scholar
  41. 41.
    Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  42. 42.
    Van Nieuwenborgh, D., Vermeir, D.: Order and negation as failure. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 194–208. Springer, Heidelberg (2003)Google Scholar
  43. 43.
    Van Nieuwenborgh, D., Vermeir, D.: Ordered diagnosis. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 244–258. Springer, Heidelberg (2003)Google Scholar
  44. 44.
    Vázquez-Salceda, J., Padget, J., Cortés, U., López-Navidad, A., Caballero, F.: Formalizing an electronic institution for the distribution of human tissues. Artificial Intelligence in Medicine 27(3), 233–258, published by Elsevier (2003)CrossRefGoogle Scholar
  45. 45.
    Wakaki, T., Inoue, K., Sakama, C., Nitta, K.: Computing preferred answer sets in answer set programming. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 259–273. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Davy Van Nieuwenborgh
    • 1
  • Marina De Vos
    • 2
  • Stijn Heymans
    • 3
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer Science, Vrije Universiteit Brussel, VUB, Pleinlaan 2, B1050 BrusselsBelgium
  2. 2.Dept. of Computer Science, University of Bath, Bath, BA2 7AYUK
  3. 3.Digital Enterprise Research Institute (DERI), University of InnsbruckAustria

Personalised recommendations