On a Quest for Good Process Models: The Cross-Connectivity Metric

  • Irene Vanderfeesten
  • Hajo A. Reijers
  • Jan Mendling
  • Wil M. P. van der Aalst
  • Jorge Cardoso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5074)

Abstract

Business process modeling is an important corporate activity, but the understanding of what constitutes good process models is rather limited. In this paper, we turn to the cognitive dimensions framework and identify the understanding of the structural relationship between any pair of model elements as a hard mental operation. Based on the weakest-link metaphor, we introduce the cross-connectivity metric that measures the strength of the links between process model elements. The definition of this new metric builds on the hypothesis that process models are easier understood and contain less errors if they have a high cross-connectivity. We undertake a thorough empirical evaluation to test this hypothesis and present our findings. The good performance of this novel metric underlines the importance of cognitive research for advancing the field of process model measurement.

Keywords

business process modeling quality metrics connectivity EPCs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  2. 2.
    Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Modeling. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 30–49. Springer, Berlin (2000)CrossRefGoogle Scholar
  3. 3.
    Bieman, J.M., Kang, B.-K.: Measuring Design-level Cohesion. IEEE Transactions on Software Engineering 24(2), 111–124Google Scholar
  4. 4.
    Blackwell, A.F.: Ten Years of Cognitive Dimensions in Visual Languages and Computing. Journal of Visual Languages and Computing 17(4), 285–287 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Card, D.N., Church, V.E., Agresti, W.W.: An Empirical Study of Software Design Practices. IEEE Transactions on Software Engineering 12(2), 264–271Google Scholar
  6. 6.
    Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s Properties. In: Proceedings of the 6th International Enformatika Conference (IEC 2005), pp. 213–218. International Academy of Sciences (2005)Google Scholar
  7. 7.
    Cardoso, J.: How to Measure the Control-flow Complexity of Web Processes and Workflows. In: Fischer, L. (ed.) Workflow Handbook 2005, Future Strategies, Lighthouse Point (2005)Google Scholar
  8. 8.
    Cardoso, J.: Process Control-flow Complexity Metric: an Empirical Validation. In: IEEE International Conference on Services Computing (IEEE SCC 2006), pp. 167–173. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  9. 9.
    Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A Discourse on Complexity of Process Models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 115–126. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Daneva, M., Heib, R., Scheer, A.-W.: Benchmarking Business Process Models. IWi Research Report 136, Institute for Information Systems, University of the Saarland, Germany (1996)Google Scholar
  11. 11.
    Green, T.R.G., Petre, M.: Usability Analysis of Visual Programming Environments: A ’Cognitive Dimensions’ Framework. Journal of Visual Languages and Computing 7(2), 131–174 (1996)CrossRefGoogle Scholar
  12. 12.
    Gruhn, V., Laue, R.: Complexity Metrics for Business Process Models. In: Proceedings of the 9th international conference on business information systems (BIS 2006). Lecture Notes in Informatics, vol. 85 (2006)Google Scholar
  13. 13.
    Hosmer, D., Lemeshow, S.: Applied Logistic Regression, 2nd edn. Wiley & Sons, Chichester (2000)MATHGoogle Scholar
  14. 14.
    Kafura, D.: A Survey of Software Metrics. In: ACM 1985: Proceedings of the 1985 ACM annual conference on The range of computing: mid-80’s perspective, pp. 502–506. ACM Press, New York (1985)Google Scholar
  15. 15.
    Kang, B.-K., Bieman, J.M.: A Quantitative Framework for Software Restructuring. Journal of Software Maintenance 11, 245–284 (1999)CrossRefGoogle Scholar
  16. 16.
    Kawalek, P., Kueng, P.: The Usefulness of Process Models: A Lifecycle Description of how Process Models are used in Modern Organisations. In: Siau, K., Wand, Y., Parsons, J. (eds.) Proceedings of the Second CAiSE/IFIP8.1 International Workshop on Evaluation of Modelling Methods in Systems Analysis and Design, pp. 1–12 (1997)Google Scholar
  17. 17.
    Keller, G., Teufel, T.: Sap R/3 Process Oriented Implementation: Iterative Process Prototyping. Addison-Wesley Longman Publishing Co., Inc, Boston (1998)Google Scholar
  18. 18.
    Krogstie, J., Sindre, G., Jørgensen, H.: Process Models Representing Knowledge for Action: a Revised Quality Framework. European Journal of Information Systems 15(1), 91–102 (2006)CrossRefGoogle Scholar
  19. 19.
    Lindsay, A., Downs, D., Lunn, K.: Business processes: attempts to find a definition. Information and Software Technology 45(15), 1015–1019 (2003)CrossRefGoogle Scholar
  20. 20.
    Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. PhD thesis, Vienna University of Economics and Business Administration, Vienna, Austria (May 2007)Google Scholar
  21. 21.
    Mendling, J., van der Aalst, W.M.P.: Formalization and Verification of EPCs with OR-Joins Based on State and Context. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 439–453. Springer, Berlin (2007)CrossRefGoogle Scholar
  22. 22.
    Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the Occurrence of Errors in Process Models based on Metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Berlin (2007)CrossRefGoogle Scholar
  24. 24.
    Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neumann, G.: Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data and Knowledge Engineering 64(1), 312–329 (2008)CrossRefGoogle Scholar
  25. 25.
    Morasca, S.: Measuring Attributes of Concurrent Software Specifications in Petri-nets. In: Proceedings of the 6th International Symposium on Software Metrics, pp. 100–110. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  26. 26.
    Ould, M.A.: Business Processes: Modelling and Analysis for Re-engineering and Improvement. Wiley, Chichester (1995)Google Scholar
  27. 27.
    Reijers, H.A.: A Cohesion Metric for the Definition of Activities in a Workflow Process. In: Proceedings of the 8th CAiSE/IFIP8.1 International workshop on Evaluation of Modeling Methods in Systems Analysis and Design (EMMSAD 2003), pp. 116–125 (2003)Google Scholar
  28. 28.
    Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow Process Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 290–305. Springer, Berlin (2004)Google Scholar
  29. 29.
    Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process Management Journal 12(2), 249–254 (2006)CrossRefGoogle Scholar
  30. 30.
    Rosemann, M.: Potential Pitfalls of Process Modeling: Part B. Business Process Management Journal 12(3), 377–384 (2006)CrossRefGoogle Scholar
  31. 31.
    Selby, R.W., Basili, V.R.: Analyzing Error-Prone System Structure. IEEE Transactions on Software Engineering 17, 141–152 (1991)CrossRefGoogle Scholar
  32. 32.
    Shen, V.Y., Yu, T.-J., Thebaut, S.M., Paulsen, L.R.: Identifying Error-Prone Software. IEEE Transactions on Software Engineering 11, 317–324 (1985)CrossRefGoogle Scholar
  33. 33.
    Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Quality Metrics for Business Process Models. In: Fischer, L. (ed.) BPM and Workflow Handbook 2007, Future Strategies, USA, May 2007, pp. 179–190 (2007)Google Scholar
  34. 34.
    Vanderfeesten, I., Cardoso, J., Reijers, H.A.: A Weighted Coupling Metric for Business Process Models. In: Eder, J., Tomassen, S.L., Opdahl, A., Sindre, G. (eds.) Proceedings of the CAiSE 2007 Forum, CEUR Workshop Proceedings, vol. 247, pp. 41–44 (2007)Google Scholar
  35. 35.
    Xenos, M., Stavrinoudis, D., Zikouli, K., Christodoulakis, D.: Object-Oriented Metrics - A Survey. In: Proceedings of the FESMA 2000, Federation of European Software Measurement Associations, pp. 1–10 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Irene Vanderfeesten
    • 1
  • Hajo A. Reijers
    • 1
  • Jan Mendling
    • 2
  • Wil M. P. van der Aalst
    • 1
    • 2
  • Jorge Cardoso
    • 3
  1. 1.Department of Technology ManagementTechnische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.Faculty of Information TechnologyQueensland University of TechnologyBrisbaneAustralia
  3. 3.SAP Research CEC, SAP AGDresdenGermany

Personalised recommendations