KAF: Kalman Filter Based Adaptive Maintenance for Dependability of Composite Services

  • Huipeng Guo
  • Jinpeng Huai
  • Yang Li
  • Ting Deng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5074)


Service composition is fundamental in development of Web service oriented applications. Dependability of composite services is of significant importance since it directly impacts users’ experience. However, dependability of a composite service may change over time as a result of inevitable changes in component services. In addition, users may also pose varying dependability requirements to meet different needs. It has become a big challenge to dynamically maintain the dependability of composite services. This paper proposes an innovative system called KAF that constructs a closed-loop control for adaptive maintenance of composite services. Modeling the control process as a Markov decision process (MDP), we further design an efficient Kalman-Filter based algorithm for service state prediction. With the availability of the precise prediction, optimal control decisions can be made. We evaluate the performance of KAF against other alternative approaches through comprehensive experiments and results demonstrate that KAF is capable for adaptive dependability maintenance.


service composition dependability adaptive maintenance Kalman filter 


  1. 1.
    Harney, H., Doshi, P.: Speeding up Adaptation of Web Service Compositions Using Expiration Times. In: Proc. of WWW (2007)Google Scholar
  2. 2.
    Jurca, R., Binder, W., Faltings, B.: Reliable QoS Monitoring Based on Client Feedback. In: Proc. of WWW (2007)Google Scholar
  3. 3.
    Wu, K., David, J., et al.: The Applicability of Adaptive Control Theory to QoS Design: Limitations and Solutions. In: Proc. of IEEE IPDPS (2005)Google Scholar
  4. 4.
    Guo, H., Huai, J., et al.: ANGEL: Optimal Configuration for High Available Service Composition. In: Proc. of ICWS (2007)Google Scholar
  5. 5.
    Avizienis, A., Laprie, J., et al.: Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transaction on Dependable and Secure Computing 1(1), 11–33 (2004)CrossRefGoogle Scholar
  6. 6.
    Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks. In: Proc. of Conference on Computer Security (1994)Google Scholar
  7. 7.
    Golbeck, J.: Computing and Applying Trust in Web-based Social Networks. PhD thesis, University of Maryland (2005)Google Scholar
  8. 8.
    Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: Proc. of NSPW (1997)Google Scholar
  9. 9.
    Liu, Y., Ngu, A.H.H., Zeng, L.: QoS Computation and Policing in Dynamic Web Service Selection. In: Proc. of WWW (2004)Google Scholar
  10. 10.
    Ran, S.: A model for web services discovery with QoS. ACM SIGecom Exchanges (2003)Google Scholar
  11. 11.
    Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-Interscience, Chichester (1994)zbMATHGoogle Scholar
  12. 12.
    Haykin, S.: Adaptive Filter Theory, 4th edn. Pearson Education, London (2002)Google Scholar
  13. 13.
    Kim, S., Rosu, M.: A survey of public web services. In: Proc. of WWW (2004)Google Scholar
  14. 14.
    Baresi, L., Guinea, S.: Towards Dynamic Web Services. In: Proc. of ICSE (2006)Google Scholar
  15. 15.
    Sun, H., et al.: Research and Implementation of Dynamic Web Services Composition. In: Zhou, X., Xu, M., Jähnichen, S., Cao, J. (eds.) APPT 2003. LNCS, vol. 2834, pp. 457–466. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Mennie, D., Pagurek, B.: An Architecture to Support Dynamic Composition of Service Components. In: Proc. of WCOP (2000)Google Scholar
  17. 17.
    Casati, F., et al.: eFlow: A Platform for Developing and Managing Composite e-Services. In: Proc. of AIWORC (2000)Google Scholar
  18. 18.
    Verma, K., et al.: METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of Web Services. Journal of Information Technology and management (2005)Google Scholar
  19. 19.
    Harney, J., Doshi, P.: Adaptive Web Processes Using Value of Changed Information. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 179–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Guinea, S.: Self-healing web service compositions. In: Proc. of ICSE (2005)Google Scholar
  21. 21.
    Baresi, L., et al.: Towards Self-healing Service Compositions. In: Proc. of PRISE (2004)Google Scholar
  22. 22.
    Tartanoglu, F., Issarny, V., et al.: Coordinated forward error recovery for composite Web services. In: Proc. of SRDS (2003)Google Scholar
  23. 23.
    Birman, K., Renesse, R., Vogels, W.: Adding High Availability and Autonomic Behavior to Web Services. In: Proc. of ICSE (2004)Google Scholar
  24. 24.
    Ge, S., et al.: WebSASE: A Web Service-based Application Supporting Environment. In: Proc. of the 5th Northeast Asia Symposium (2002)Google Scholar
  25. 25.
    Godfrey, P., et al.: Minimizing Churn in Distributed Systems. In: Proc. of SIGCOMM (2006)Google Scholar
  26. 26.
    Li, X., Nahrstedt, K.: Minimum User-perceived Interference Routing in Service Composition. In: Proc. of INFOCOM (2006)Google Scholar
  27. 27.
    Salas, J., et al.: WS-Replication: A Framework for Highly Available Web Services. In: Proc. of WWW (2006)Google Scholar
  28. 28.
    Ye, X., Shen, Y.: A Middleware for Replicated Web Services. In: Proc. of ICWS (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Huipeng Guo
    • 1
  • Jinpeng Huai
    • 1
  • Yang Li
    • 1
  • Ting Deng
    • 1
  1. 1.School of Computer Science and EngineeringBei Hang UniversityBeijing 

Personalised recommendations