Capturing and Using QoS Relationships to Improve Service Selection

  • Caroline Herssens
  • Ivan J. Jureta
  • Stéphane Faulkner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5074)


In a Service-Oriented System (SOS), service requesters specify tasks that need to be executed and the quality levels to meet, whereas service providers advertise their services’ capabilities and the quality levels they can reach. Service selectors then match to the relevant tasks, the candidate services that can perform these tasks to the most desirable quality levels. One of the key problems in QoS-aware service selection lies in managing tradeoffs among QoS expectations at runtime, that is, situations in which service requesters specify quality levels that cannot be simultaneously met. We propose a service selection approach that can deal with tradeoffs. The approach consists of: (i) rich QoS models to be used by service requesters when expressing QoS expectations and service providers when describing services’ QoS, and for representing preference and priority relationships between QoS dimensions; and (ii) a multi-criteria decision making technique that uses the models for service selection.


QoS model service selection QoS relationships 


  1. 1.
    Aagedal, J.O., Ecklund Jr., E.F.: Modelling QoS: Towards a UML Profile. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 275–289. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Asensio, J.I., Villagra, V.A., Lopez de Vergana, J.E., Berrocal, J.J.: UML Profiles for the Specification and Instrumentation of QoS Management Information In Distributed Object-based Applications. In: Proceedings of the fifth world multi-conference on systemics, cybernetics and informatics, pp. 22–25 (2002)Google Scholar
  3. 3.
    Benetallah, B., Casati, F.: Special Issue on Web Services. Distributed and Parallel Databases 12, 115–116 (2002)CrossRefGoogle Scholar
  4. 4.
    Casati, F., Castellanos, M., Dayal, U., Shan, M.C.: Probabilistic, context-sensitive, and goal-oriented services selection. In: ICSOC 2004: Proceedings of the 2nd international conference on Service oriented computing (2004)Google Scholar
  5. 5.
    Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software Engineering. The Kluwer International Series in Software Engineering, vol. 5. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    D’Ambrogio, A.: A model-driven WSDL Extension for Describing the QoS of Web Services. In: Proceedings of the International Conference on Web Services (ICWS 2006) (2006)Google Scholar
  7. 7.
    Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gu, X., Nahrstedt, K.: A Scalable QoS-Aware Service Aggregation Model for Peer-to-Peer Computing Grids. In: HPDC 2002: Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing (2002)Google Scholar
  9. 9.
    Hwang, C.L., Yoon, K.: Multi-Attribute Decision Making: Methods and Applications. Springer, Heidelberg (1981)Google Scholar
  10. 10.
    Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Web Service Composition using Workflow Patterns. In: EDOC 2004: Proceedings of the Enterprise Distributed Object Computing Conference, Eighth IEEE International (2004)Google Scholar
  11. 11.
    Jureta, I.J., Herssens, C., Faulkner, S.: A Comprehensive Quality Model for Service-Oriented Systems. Software Quality Journal (accepted for publication),
  12. 12.
    Kalepu, S., Krishnaswamy, S., Loke, S.W.: Verity: A QoS Metric for Selecting Web Services and Providers. In: WISEW 2003: Proceedings of the fourth International Conference on Web Information Systems Engineering Workshops (2003)Google Scholar
  13. 13.
    Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services. Journal of Network Systems Management 11(1) (2003)Google Scholar
  14. 14.
    Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS computation and policing in dynamic web services selection. In: WWW Alt. 2004: Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters (2004)Google Scholar
  15. 15.
    Marichal, J.-L., Roubens, M.: Determination of weights of interacting criteria from a reference set. European Journal of Operational Research 124, 641–650 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Marichal, J.-L.: Aggregation of interacting criteria by means of the discrete Choquet integral. Studies in Fuzziness and Soft. Computing 97, 224–244 (2002)MathSciNetGoogle Scholar
  17. 17.
    Maximilien, E.M., Singh, M.P.: Toward autonomic services trust and selection. In: ICSOC 2004: Proceedings of the International Conference on Service-Oriented Computing (2004)Google Scholar
  18. 18.
    Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75 (2002)CrossRefGoogle Scholar
  19. 19.
    Mikhailov, L., Tsvetinov, P.: Fuzzy Approach to Outsourcing of Information Technology Services. In: SAC 2005: Proceedings of ACM Symposium on Applied Computing (2005)Google Scholar
  20. 20.
    Naumann, F., Freytag, J.C., Leser, U.: Quality-driven Integration of Heterogeneous Information Systems. In: Proceedings of th 25th VLDB Conference (1999)Google Scholar
  21. 21.
    The Object Management Group. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms. Adopted Specification (2006)Google Scholar
  22. 22.
    O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What’s in a Service? Towards accurate description of non-functional service properties. Distrib. Parallel Databases 12(2-3), 117–133 (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communications of the ACM 46(10), 25–28 (2003)CrossRefGoogle Scholar
  24. 24.
    Ran, S.: A Model for Web Services Discovery with QoS. ACM Sigecom exchanges (2003)Google Scholar
  25. 25.
    Salazar-Zarate, G., Botella, P.: Use of UML for modeling non-functional aspects. In: Proceedings of the International Conference on Software and Systems Engineering and their Applications (ICSSEA 2000) (2000)Google Scholar
  26. 26.
    Shaikh, S.E., Mehandjiev, N.: Multi-Attribute Negotiation in E-Business Process Composition. In: WETICE 2004: Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (2004)Google Scholar
  27. 27.
    Tong, H., Zhang, S.: A Fuzzy Multi-attribute Decision Making Algorithm for Web Services Selection Based on QoS. In: APSCC 2006: Proceedings of the IEEE Asia-Pacific Conference on Services Computing (2006)Google Scholar
  28. 28.
    Vu, L.-H., Hauswirth, M., Aberer, K.: QoS-Based Service Selection and Ranking with Trust and Reputation Management. In: Proceedings of the 13th International Conference On Cooperative Information Systems (CoopIS 2005) (2005)Google Scholar
  29. 29.
    Xiong, P., Fan, Y.: QoS-aware Web Services Selection by a Synthetic Weight. In: Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery (2007)Google Scholar
  30. 30.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)CrossRefGoogle Scholar
  31. 31.
    Zhou, C., Chia, L.-T., Lee, B.-S.: Daml-qos ontology for web services. In: ICWS 2004: Proceedings of the International Conference on Web Services (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Caroline Herssens
    • 1
  • Ivan J. Jureta
    • 2
  • Stéphane Faulkner
    • 2
  1. 1.ISYS, LSMUniversité catholique de LouvainBelgium
  2. 2.PReCISE, LSMUniversity of NamurBelgium

Personalised recommendations