Higher-Order Calculus of Variations on Time Scales

  • Rui A. C. Ferreira
  • Delfim F. M. Torres


We prove a version of the Euler-Lagrange equations for certain problems of the calculus of variations on time scales with higher-order delta derivatives.


time scales calculus of variations delta-derivatives of higher-order Euler-Lagrange equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atici FM, Biles DC, Lebedinsky A (2006) An application of time scales to economics. Math. Comput. Modelling 43(7–8):718–726.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bohner M (2004) Calculus of variations on time scales. Dyn. Sys. and Appl. 272(13):339–349.MathSciNetGoogle Scholar
  3. 3.
    Bohner M, Peterson A (2001) Dynamic equations on time scales: an introduction with applications. Birkhäuser, Boston.zbMATHGoogle Scholar
  4. 4.
    Hilscher R, Zeidan V (2004) Calculus of variations on time scales: weak local rd solutions with variable endpoints. J. Math. Anal. Appl. 289(1):143.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rui A. C. Ferreira
    • 1
  • Delfim F. M. Torres
    • 1
  1. 1.Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations