CD1-Restricted T Cells in Host Defense to Infectious Diseases

  • S. M. Behar
  • S. A. Porcelli
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Porcelli SA (1995) The CD1 family: a third lineage of antigen presenting molecules. Adv Immunol 59:1–98PubMedGoogle Scholar
  2. 2.
    Dascher CC, Brenner MB (2003) Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 24:412–418PubMedGoogle Scholar
  3. 3.
    Calabi F, Jarvis L, Martin JM, Milstein C (1989) Two classes of CD1 genes. Eur J Immunol 19:285–292PubMedGoogle Scholar
  4. 4.
    Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Ann Rev Immunol 22:817–890Google Scholar
  5. 5.
    Nicolle D, Fremond C, Pichon X, Bouchot A, Maillet I, Ryffel B, Quesniaux VJ (2004) Long-term control of Mycobacterium bovis BCG infection in the absence of toll-like receptors (TLRs): investigation of TLR2-, TLR6-, or TLR2-TLR4-deficient mice. Infect Immun 72:6994–7004PubMedGoogle Scholar
  6. 6.
    Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17:297–329PubMedGoogle Scholar
  7. 7.
    Small TN, Knowles RW, Keever C, Kernan NA, Collins N, O’Reilly RJ, Dupont B, lomenberg NF (1987) M241 (CD1c) expression on B lymphocytes. J Immunol 138:2864–2868PubMedGoogle Scholar
  8. 8.
    Small TN, Keever C, Collins N, Dupont, O’Reilly RJ, Flomenberg N (1989) Characterization of B cells in severe combined immunodeficiency disease. Hum Immunol 25:181–193PubMedGoogle Scholar
  9. 9.
    Hiromatsu K, Dascher CC, Sugita M, Gingrich-Baker C, Behar SM, LeClair KP, Brenner MB, Porcelli SA (2002) Characterization of guinea-pig group 1 CD1 proteins. Immunology 106:159–172PubMedGoogle Scholar
  10. 10.
    Stenger S, Niazi KR, Modlin RL (1998) Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 161:3582–3588PubMedGoogle Scholar
  11. 11.
    Giuliani A, Prete SP, Graziani G, Aquino A, Balduzzi A, Sugita M, Brenner MB, Iona E, Fattorini L, Orefici G, Porcelli SA, Bonmassar E (2001) Influence of Mycobacterium bovis bacillus Calmette Guerin on in vitro induction of CD1 molecules in human adherent mononuclear cells. Infect Immun 69:7461–7470PubMedGoogle Scholar
  12. 12.
    Prete SP, Giuliani A, Iona E, Fattorini L, Orefici G, Franzese O, Bonmassar E, Graziani G (2001) Bacillus Calmette-Guerin down-regulates CD1b induction by granulocyte-macrophage colony stimulating factor in human peripheral blood monocytes. J Chemother 13:52–58PubMedGoogle Scholar
  13. 13.
    Amprey JL, Spath GF, Porcelli SA (2004) Inhibition of CD1 expression in human dendritic cells during intracellular infection with Leishmania donovani. Infect Immun 72:589–592PubMedGoogle Scholar
  14. 14.
    Roura-Mir C, Wang L, Cheng TY, Matsunaga I, Dascher CC, Peng SL, Fenton MJ, Kirschning C, Moody DB (2005) Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J Immunol 175:1758–1766PubMedGoogle Scholar
  15. 15.
    Sieling PA, Jullien D, Dahlem M, Tedder TF, Rea TH, Modlin RL, Porcelli SA (1999) CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. J Immunol 162:1851–1858PubMedGoogle Scholar
  16. 16.
    Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE, Graeber TG, Sieling PA, Liu YJ, Rea TH, Bloom BR, Modlin RL (2005) TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 11:653–660PubMedGoogle Scholar
  17. 17.
    Dascher CC, Hiromatsu K, Naylor JW, Brauer PP, Brown KA, Storey JR, Behar SM, Kawasaki ES, Porcelli SA, Brenner MB, LeClair KP (1999) Conservation of a CD1. Multigene family in the guinea pig. J Immunol 163:5478–5488PubMedGoogle Scholar
  18. 18.
    Hiromatsu K, Dascher CC, LeClair KP, Sugita M, Furlong ST, Brenner MB, Porcelli SA (2002) Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J Immunol 169:330–339PubMedGoogle Scholar
  19. 19.
    Hayes SM, Knight KL (2001) Group 1 CD1 genes in rabbit. J Immunol 166:403–410PubMedGoogle Scholar
  20. 20.
    Van Rhijn I, Koets AP, Im JS, Piebes D, Reddington F, Besra GS, Porcelli SA, van Eden W, MGRutten VP (2006) The bovine CD1 Family contains group 1 CD1 proteins, but no functional CD1d. J Immunol 176:4888–4893PubMedGoogle Scholar
  21. 21.
    Castillo F, Guerrero C, Trujillo E, Delgado G, Martinez P, Salazar LM, Barato P, Patarroyo ME, Parra-Lopez C (2004) Identifying and structurally characterizing CD1b in Aotus nancymaae owl monkeys. Immunogenetics 56:480–489PubMedGoogle Scholar
  22. 22.
    Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4(−)8(−) T lymphocytes to a microbial antigen. Nature 360:593–597PubMedGoogle Scholar
  23. 23.
    Moody DB, Besra GS (2001) Glycolipid targets of CD1-mediated T-cell responses. Immunology 104:243–251PubMedGoogle Scholar
  24. 24.
    Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–230PubMedGoogle Scholar
  25. 25.
    Beckman EM, Melian A, Behar SM, Sieling PA, Chatterjee D, Furlong ST, Matsumoto R, Rosat JP, Modlin RL, Porcelli SA (1996) CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second-member of the human CD1 family. J Immunol 157:2795–2803PubMedGoogle Scholar
  26. 26.
    Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 372:691–694PubMedGoogle Scholar
  27. 27.
    Thomssen H, Ivanyi J, Espitia C, Arya A, Londei M (1995) Human CD4-CD8-alpha beta + T-cell receptor T cells recognize different mycobacteria strains in the context of CD1b. Immunology 85:33–40PubMedGoogle Scholar
  28. 28.
    Rosat JP, Grant EP, Beckman EM, Dascher CC, Sieling PA, Frederique D, Modlin RL, Porcelli SA, Furlong ST, Brenner MB (1999) CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. J Immunol 162:366–371PubMedGoogle Scholar
  29. 29.
    Sieling PA, Ochoa MT, Jullien D, Leslie DS, Sabet S, Rosat JP, Burdick AE, Rea TH, Brenner MB, Porcelli SA, Modlin RL (2000) Evidence for human CD4+ T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J Immunol 164:4790–4796PubMedGoogle Scholar
  30. 30.
    Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin RL (1997) Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:1684–1687PubMedGoogle Scholar
  31. 31.
    Grant EP, Beckman EM, Behar SM, Degano M, Frederique D, Besra GS, Wilson IA, Porcelli SA, Furlong ST, Brenner MB (2002) Fine specificity of TCR complementarity: determining region residues and lipid antigen hydrophilic moieties in the recognition of a CD1-lipid complex. J Immunol 168:3933–3940PubMedGoogle Scholar
  32. 32.
    Ulrichs T, Moody DB, Grant E, Kaufmann SH, and Porcelli SA (2003) T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087PubMedGoogle Scholar
  33. 33.
    Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Bohmer G, Prandi J, Mori L, Puzo G, De Libero G (2004) Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199:649–659PubMedGoogle Scholar
  34. 34.
    Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–888PubMedGoogle Scholar
  35. 35.
    Kawashima T, Norose Y, Watanabe Y, Enomoto Y, Narazaki H, Watari E, Tanaka S, Takahashi H, Yano I, Brenner MB, Sugita M (2003) Cutting edge: major CD8 T cell response to live bacillus Calmette-Guerin is mediated by CD1 molecules. J Immunol 170:5345–5348PubMedGoogle Scholar
  36. 36.
    Sieling PA, Torrelles JB, Stenger S, Chung W, Burdick AE, Rea TH, Brennan PJ, Belisle JT, Porcelli SA, Modlin RL (2005) The human CD1-restricted T cell repertoire is limited to cross-reactive antigens: implications for host responses against immunologically related pathogens. J Immunol 174:2637–2644PubMedGoogle Scholar
  37. 37.
    Dascher CC, Hiromatsu K, Xiong X, Morehouse C, Watts G, Liu G, McMurray DN, LeClair KP, Porcelli SA, Brenner MB (2003) Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int Immunol 15:915–925PubMedGoogle Scholar
  38. 38.
    Fairhurst RM, Wang CX, Sieling PA, Modlin RL, Braun J (1998) CD1 presents antigens from a Gram-negative bacterium Haemophilus influenzae type b. Infect Immun 66:3523–3526PubMedGoogle Scholar
  39. 39.
    Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890PubMedGoogle Scholar
  40. 40.
    Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1:20–30PubMedGoogle Scholar
  41. 41.
    Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636PubMedGoogle Scholar
  42. 42.
    Behar SM, Cardell S (2000) Diverse CD1d-restricted T cells: diverse phenotypes, and diverse functions. Semin Immunol 12:551–560PubMedGoogle Scholar
  43. 43.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Kaer LV (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237PubMedGoogle Scholar
  44. 44.
    Gonzalez-Aseguinolaza G, de Oliveira C, Tomaska M, Hong S, Bruna-Romero O, Nakayama T, Taniguchi M, Bendelac A, Van Kaer L, Koezuka Y, Tsuji M (2000) Alpha-galactosylceramide-activated Valpha 14 natural killer T cells mediate protection against murine malaria. Proc Natl Acad Sci U S A 97:8461–8466PubMedGoogle Scholar
  45. 45.
    Kakimi K, Guidotti LG, Koezuka Y, Chisari FV (2000) Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 192:921–930PubMedGoogle Scholar
  46. 46.
    Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K, Nakayama T, Taniguchi M, Saito A (2001) Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun 69:213–220PubMedGoogle Scholar
  47. 47.
    Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB (1999) Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189:1973–1980PubMedGoogle Scholar
  48. 48.
    Chackerian A, Alt J, Perera V, Behar SM (2002) Activation of NKT cells protects mice from tuberculosis. Infect Immun 70:6302–6309PubMedGoogle Scholar
  49. 49.
    Skold M, Behar SM (2003) Role of CD1d-restricted NKT cells inmicrobial immunity. Infect Immun 71:5447–5455PubMedGoogle Scholar
  50. 50.
    Yu KO, Porcelli SA (2005) The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol Lett 100:42–55PubMedGoogle Scholar
  51. 51.
    Gumperz JE (2006) The Ins and outs of CD1 molecules: bringing lipids under immunological surveillance. Traffic 7:2–13PubMedGoogle Scholar
  52. 52.
    Rauch J, Gumperz J, Robinson C, Skold M, Roy C, Young DC, Lafleur M, Moody DB, Brenner MB, Costello CE, Behar SM (2003) Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell. J Biol Chem 278:47508–47515PubMedGoogle Scholar
  53. 53.
    Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A (1999) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903Google Scholar
  54. 54.
    Procopio DO, Almeida IC, Torrecilhas AC, Cardoso JE, Teyton L, Travassos LR, Bendelac A, Gazzinelli RT (2002) Glycosyl-phosphatidylinositol-anchored mucin like glycoproteins from Trypanosoma cruzi bind to CD1d but do not elicit dominant innate or adaptive immune responses via the CD1d/NKT cell pathway. J Immunol 169:3926–3933PubMedGoogle Scholar
  55. 55.
    Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525PubMedGoogle Scholar
  56. 56.
    Mattner J, Debord KL, Ismail N, DGoff R, Cantu C III, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529PubMedGoogle Scholar
  57. 57.
    Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Spath GF (2004) A subset of liver NKT cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200:895–904PubMedGoogle Scholar
  58. 58.
    Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101:10685–10690PubMedGoogle Scholar
  59. 59.
    Dascher CC, Hiromatsu K, Xiong X, Morehouse C, Watts G, Liu G, McMurray DN, LeClair KP, Porcelli SA, Brenner MB (2003) Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int Immunol 15:915–925PubMedGoogle Scholar
  60. 60.
    Basta S, Bennink JR (2003) A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol 16:231–242PubMedGoogle Scholar
  61. 61.
    Hamerman JA, Ogasawara K, Lanier LL (2005) NK cells in innate immunity. Curr Opin Immunol 17:29–35PubMedGoogle Scholar
  62. 62.
    Cerwenka A, Lanier LL (2003) NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigens 61:335–343PubMedGoogle Scholar
  63. 63.
    Balk SP, Ebert EC, Blumenthal RL, McDermott FV, Wucherpfennig KW, Landau SB, Blumberg RS (1991) Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 253:1411–1415PubMedGoogle Scholar
  64. 64.
    Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865PubMedGoogle Scholar
  65. 65.
    Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182:993–1004PubMedGoogle Scholar
  66. 66.
    Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB (1999) Diverse TCRs recognize murine CD1. J Immunol 162:161–167PubMedGoogle Scholar
  67. 67.
    Park SH, Roark JH, Bendelac A (1998) Tissue-specific recognition of mouse CD1 molecules. J Immunol 160:3128–3134PubMedGoogle Scholar
  68. 68.
    Skold M, Xiong X, Illarionov PA, Besra GS, Behar SM (2005) Interplay of cytokines and microbial signals in regulation of CD1d expression and NKT cell activation. J Immunol 175:3584–3593PubMedGoogle Scholar
  69. 69.
    Chiu YH, Jayawardena J, Weiss A, Lee D, Park SH, Dautry-Varsat A, Bendelac A (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189:103–110PubMedGoogle Scholar
  70. 70.
    Chen H, Paul WE (1997) Cultured NK1.1+ CD4+ T cells produce large amounts of IL-4 and IFN-gamma upon activation by anti-CD3 or CD1. J Immunol 159:2240–2249PubMedGoogle Scholar
  71. 71.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629PubMedGoogle Scholar
  72. 72.
    Kamada N, Iijima H, Kimura K, Harada M, Shimizu E, Motohashi S, Kawano T, Shinkai H, Nakayama T, Sakai T, Brossay L, Kronenberg M, Taniguchi M (2001) Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to V(alpha)14 NKT cells. Int Immunol 13:853–861PubMedGoogle Scholar
  73. 73.
    Cantu C III, Benlagha K, Savage PB, Bendelac A, Teyton L (2003) The paradox of immune molecular recognition of alpha-galactosylceramide: low affinity low specificity for CD1d high affinity for alpha beta TCRs. J Immunol 170:4673–4382PubMedGoogle Scholar
  74. 74.
    Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, YKoezuka T, Porcelli SA, Cardell S, Brenner MB, Behar SM (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedGoogle Scholar
  75. 75.
    Naidenko OV, Maher JK, Ernst WA, Sakai T, Modlin RL, Kronenberg M (1999) Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J Exp Med 190:1069–1080PubMedGoogle Scholar
  76. 76.
    Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237PubMedGoogle Scholar
  77. 77.
    Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618PubMedGoogle Scholar
  78. 78.
    Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K Van Kaer L, Kawano T, Taniguchi M, Nishimura T (1999) The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189:1121–1128PubMedGoogle Scholar
  79. 79.
    Roark JH, Park SH, Jayawardena J, Kavita U, Shannon M, Bendelac A (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol 160:3121–3127PubMedGoogle Scholar
  80. 80.
    Berntman E, Rolf J, Johansson C, Anderson P, Cardell SL (2005) The role of CD1d-restricted NKT lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur J Immunol 35:2100–2109PubMedGoogle Scholar
  81. 81.
    Sanchez DJ, Gumperz JE, Ganem D (2005) Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 115:1369–1378PubMedGoogle Scholar
  82. 82.
    Probst HC, van den Broek MF (2005) Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J Immunol 174:3920–3924PubMedGoogle Scholar
  83. 83.
    Van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M, Duez C, Hoogsteden HC, Lambrecht BN (2005) In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201:981–991PubMedGoogle Scholar
  84. 84.
    Bezbradica JS, Stanic AK, Matsuki N, Bour-Jordan H, Bluestone JA, Thomas JW, Unutmaz D, Van Kaer L, Joyce S (2005) Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 174:4696–4705PubMedGoogle Scholar
  85. 85.
    Kirby AC, Yrlid U, Wick MJ (2002) The innate immune response differs in primary and secondary Salmonella infection. J Immunol 169:4450–4459PubMedGoogle Scholar
  86. 86.
    Gansert JL, Kiebler V, Engele M, Wittke F, Rollinghoff M, Krensky AM, Porcelli SA, Modlin RL, Stenger S (2003) Human NKT Cells express granulysin and exhibit antimycobacterial activity. J Immunol 170:3154–3161PubMedGoogle Scholar
  87. 87.
    Kamath AB, Alt J, Debbabi H, Taylor C, Behar SM (2004) The major histocompatibility complex haplotype affects T-cell recognition of mycobacterial antigens but not resistance to Mycobacterium tuberculosis in C3H mice. Infect Immun 72:6790–6798PubMedGoogle Scholar
  88. 88.
    Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650PubMedGoogle Scholar
  89. 89.
    Kamath AB, Woodworth J, Xiong X, Taylor C, Weng Y, Behar SM (2004) Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection. J Exp. Med 200:1479–1489PubMedGoogle Scholar
  90. 90.
    Skold M, Behar SM (2005) The role of group 1 and group 2 CD1-restricted T cells in microbial immunity. Microbes Infect 7:544–551PubMedGoogle Scholar
  91. 91.
    Apostolou I, Takahama Y, Belmant C, Kawano T, Huerre M, Marchal G, Cui J, Taniguchi M, Nakauchi H, Fournie JJ, Kourilsky P, Gachelin G (1999) Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci U S A 96:5141–5146PubMedGoogle Scholar
  92. 92.
    Mempel M, Ronet C, Suarez F, Gilleron M, Puzo G, Van Kaer L, Lehuen A, Kourilsky P, Gachelin G (2002) Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. J Immunol 168:365–371PubMedGoogle Scholar
  93. 93.
    Sugawara I, Yamada G, Mizuno S, Li CY, Nakayama T, Taniguchi M (2002) Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis 82:97–104PubMedGoogle Scholar
  94. 94.
    Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR (2000) Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97:4204–4208PubMedGoogle Scholar
  95. 95.
    D’Souza CD, Cooper AM, Frank AA, Ehlers S, Turner J, Bendelac A, Orme IM (2000) A novel nonclassic beta2-microglobulin-restricted mechanism influencing early lymphocyte accumulation and subsequent resistance to tuberculosis in the lung. Am J Respir Cell Mol Biol 23:188–193PubMedGoogle Scholar
  96. 96.
    Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K, Koguchi Y, Nakayama T, Taniguchi M, Saito A (2002) Minimal contribution of Valpha14 natural killer T cells to Th1 response and host resistance against mycobacterial infection in mice. Microbiol Immunol 46:207–210PubMedGoogle Scholar
  97. 97.
    Mogues T, Goodrich M, Ryan L, LaCourse R, North R (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193:271–280PubMedGoogle Scholar
  98. 98.
    Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129PubMedGoogle Scholar
  99. 99.
    Gansert JL, Kiessler V, Engele M, Wittke F, Rollinghoff M, Krensky AM, Porcelli SA, Modlin RL, Stenger S (2003) Human NKT cells express granulysin and exhibit antimycobacterial activity. J Immunol 170:3154–3161PubMedGoogle Scholar
  100. 100.
    Ishigami M, Nishimura H, Naiki Y, Yoshioka K, Kawano T, Tanaka Y, Taniguchi S Kakumu M, Yoshikai Y (1999) The roles of intrahepatic Valpha14(+) NK1.1(+) T cells for liver injury induced by Salmonella infection in mice. Hepatology 29:1799–1808PubMedGoogle Scholar
  101. 101.
    Arrunategui-Correa V, Lenz L, Kim HS (2004) CD1d-independent regulation of NKT cell migration and cytokine production upon Listeria monocytogenes infection. Cell Immunol 232:38–48PubMedGoogle Scholar
  102. 102.
    Ranson T, Bregenholt S, Lehuen A, Gaillot O, Leite-de-Moraes MC, Herbelin A, Berche P, Di Santo JP (2005) Invariant V alpha 14+ NKT cells participate in the early response to enteric Listeria monocytogenes infection. J Immunol 175:1137–1144PubMedGoogle Scholar
  103. 103.
    Szalay G, Ladel CH, Blum C, Brossay L, Kronenberg M, Kaufmann SH (1999) Cutting edge: anti-CD1 monoclonal antibody treatment reverses the production patterns of TGF-beta 2 and Th1 cytokines and ameliorates listeriosis in mice. J Immunol 162:6955–6958PubMedGoogle Scholar
  104. 104.
    Kawakami K, Yamamoto N, Kinjo Y, Miyagi K, Nakasone C, Uezu K, Kinjo T, Nakayama T, Taniguchi M, Saito A (2003) Critical role of Valpha14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322–3330PubMedGoogle Scholar
  105. 105.
    Nieuwenhuis EE, Matsumoto T, Exley M, Schleipman RA, Glickman J, Bailey DT, Corazza N, Colgan SP, Onderdonk AB, Blumberg RS (2002) CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat Med 8:588–593PubMedGoogle Scholar
  106. 106.
    Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701PubMedGoogle Scholar
  107. 107.
    Wu D, Xing GW, Poles MA, Horowitz A, Kinjo Y, Sullivan B, Bodmer-Narkevitch V, Plettenburg O, Kronenberg M, Tsuji M, Ho DD, Wong CH (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. PNAS 102:1351–1356PubMedGoogle Scholar
  108. 108.
    Kumar H, Belperron A, Barthold SW, Bockenstedt LK (2000) Cutting edge: CD1d deficiency impairs murine host defense against the spirochete Borrelia burgdorferi. J Immunol 165:4797–4801PubMedGoogle Scholar
  109. 109.
    Belperron AA, Dailey CM, Bockenstedt LK (2005) Infection-induced marginal zone B cell production of Borrelia hermsii-specific antibody is impaired in the absence of CD1d. J Immunol 174:5681–5686PubMedGoogle Scholar
  110. 110.
    Duthie MS, Wleklinski-Lee M, Smith S, Nakayama T, Taniguchi M, Kahn SJ (2002) During Trypanosoma cruzi infection CD1d-restricted NKT cells limit parasitemia and augment the antibody response to a glycophosphoinositol-modified surface protein. Infect Immun 70:36–48PubMedGoogle Scholar
  111. 111.
    Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ (2005) Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73:181–192PubMedGoogle Scholar
  112. 112.
    Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ (2005) Both CD1d antigen presentation and interleukin-12 are required to activate natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73:1890–1894PubMedGoogle Scholar
  113. 113.
    Faveeuw C, Angeli V, Fontaine J, Maliszewski C, Capron A, Van Kaer L, Moser M, Capron M, Trottein F (2002) Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J Immunol 169:906–912PubMedGoogle Scholar
  114. 114.
    Mallevaey T, Zanetta JP, Faveeuw C, Fontaine J, Maes E, Platt F, Capron M, de Moraes ML, Trottein F (2006) Activation of Invariant NKT cells by the helminth parasite Schistosoma mansoni. J Immunol 176:2476–2485PubMedGoogle Scholar
  115. 115.
    Ishikawa H, Hisaeda H, Taniguchi M, Nakayama T, Sakai T, Maekawa Y, Nakano Y, Zhang M, Zhang T, Nishitani M, Takashima M, Himeno K (2000) CD4(+) v(alpha)14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int Immunol 12:1267–1274PubMedGoogle Scholar
  116. 116.
    Mattner J, Donhauser N, Werner-Felmayer G, Bogdan C (2006) NKT cells mediate organ-specific resistance against Leishmania major infection. Microbes Infect 8:354–362PubMedGoogle Scholar
  117. 117.
    Svensson M, Zubairi S, Maroof A, Kazi F, Taniguchi M, Kaye PM (2005) Invariant NKT cells are essential for the regulation of hepatic CXCL10 gene expression during Leishmania donovani infection. Infect Immun 73:7541–7547PubMedGoogle Scholar
  118. 118.
    Denkers EY, Scharton-Kersten T, Barbieri S, Caspar P, Sher A (1996) A role for CD4+ NK1.1+ T lymphocytes as major histocompatibility complex class II independent helper cells in the generation of CD8+ effector function against intracellular infection. J Exp Med 184:131–139PubMedGoogle Scholar
  119. 119.
    Smiley ST, Lanthier PA, Couper KN, Szaba FM, Boyson JE, Chen W, Johnson LL (2005) Exacerbated susceptibility to infection-stimulated immunopathology in CD1d-deficient mice. J Immunol 174:7904–7911PubMedGoogle Scholar
  120. 120.
    Ronet C, Darche S, de Moraes ML, Miyake S, Yamamura T, Louis JA, Kasper LH, Buzoni-Gatel D (2005) NKT cells are critical for the initiation of an inflammatory bowel response against Toxoplasma gondii. J Immunol 175:899–908PubMedGoogle Scholar
  121. 121.
    Romero JF, Eberl G, MacDonald HR, Corradin G (2001) CD1d-restricted NKT cells are dispensable for specific antibody responses and protective immunity against liver stage malaria infection in mice. Parasite Immunol 23:267–269PubMedGoogle Scholar
  122. 122.
    Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, Tachado SD (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283:225–229PubMedGoogle Scholar
  123. 123.
    Mannoor MK, Weerasinghe A, Halder RC, Reza S, Morshed M, Ariyasinghe A, Watanabe H, Sekikawa H, Abo T (2001) Resistance to malarial infection is achieved by the cooperation of NK1.1(+) and NK1.1(−) subsets of intermediate TCR cells which are constituents of innate immunity. Cell Immunol 211:96–104PubMedGoogle Scholar
  124. 124.
    Adachi K, Tsutsui H, Kashiwamura SI, Seki E, Nakano H, Takeuchi O, Takeda K, Okumura K, Van Kaer L, Okamura H, Akira S, Nakanishi K (2001) Plasmodium berghei infection in mice induces liver injury by an IL-12-and toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J Immunol 167:5928–5934PubMedGoogle Scholar
  125. 125.
    Hansen DS, Siomos MA, Buckingham L, Scalzo AA, Schofield L (2003) Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 18:391–402PubMedGoogle Scholar
  126. 126.
    Lin Y, Roberts TJ, Wang CR, Cho S, Brutkiewicz RR (2005) Long-term loss of canonical NKT cells following an acute virus infection. Eur J Immunol 35:879–889PubMedGoogle Scholar
  127. 127.
    Renukaradhya GJ, Webb TJ, Khan MA, Lin YL, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Virus-induced inhibition of CD1d1-mediated antigen presentation: reciprocal regulation by p38 and ERK. J Immunol 175:4301–4308PubMedGoogle Scholar
  128. 128.
    Chen N, McCarthy C, Drakesmith H, Li D, Cerundolo V, McMichael AJ, Screaton GR, Xu XN (2006) HIV-1 down-regulates the expression of CD1d via Nef. Eur J Immunol 36:278–286PubMedGoogle Scholar
  129. 129.
    Huber SA, Sartini D (2005) Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis. J Virol 79:2659–2665PubMedGoogle Scholar
  130. 130.
    Durante-Mangoni E, Wang R, Shaulov A, He Q, Nasser I, Afdhal N, Koziel MJ, Exley MA (2004) Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. J Immunol 173:2159–2166PubMedGoogle Scholar
  131. 131.
    De Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, Panina-Bordignon P, Abrignani S, Casorati G, Dellabona P (2004) Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol 173:1417–1425PubMedGoogle Scholar
  132. 132.
    Levy O, Orange JS, Hibberd P, Steinberg S, LaRussa P, Weinberg A, Wilson SB, Shaulov A, Fleisher G, Geha RS, Bonilla FA, Exley M (2003) Disseminated varicella infection due to the vaccine strain of varicella-zoster virus, in a patient with a novel deficiency in natural killer T cells. J Infect Dis 188:948–953PubMedGoogle Scholar
  133. 133.
    Ashkar AA, Rosenthal KL (2003) Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 77:10168–10171PubMedGoogle Scholar
  134. 134.
    Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG (2003) Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant Valpha14-Jalpha281 TCR. J Immunol 170:1430–1434PubMedGoogle Scholar
  135. 135.
    Cornish AL, Keating R, Kyparissoudis K, Smyth MJ, Carbone FR, Godfrey DI (2006) NKT cells are not critical for HSV-1 disease resolution. Immunol Cell Biol 84:13–19PubMedGoogle Scholar
  136. 136.
    Exley MA, Bigley NJ, Cheng O, Tahir SM, Smiley ST, Carter QL, Stills HF, Grusby MJ, Koezuka Y, Taniguchi M, Balk SP (2001) CD1d-reactive T-cell activation leads to amelioration of disease caused by diabetogenic encephalomyocarditis virus. J Leukoc Biol 69:713–718PubMedGoogle Scholar
  137. 137.
    Exley MA, Bigley NJ, Cheng O, Shaulov A, Tahir SM, Carter QL, Garcia J, Wang C, Patten K, Stills HF, Alt FW, Snapper SB, Balk SP (2003) Innate immune response to encephalomyocarditis virus infection mediated by CD1d. Immunology 110:519–526PubMedGoogle Scholar
  138. 138.
    Johnson TR, Hong S, Van Kaer L, Koezuka Y, Graham BS (2002) NKT cells contribute to expansion of CD8(+) T cells and amplification of antiviral immune responses to respiratory syncytial virus. J Virol 76:4294–4303PubMedGoogle Scholar
  139. 139.
    Van Dommelen SLH, Tabarias HA, Smyth MJ, Degli-Esposti MA (2003) Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells. J Virol 77:1877–1884PubMedGoogle Scholar
  140. 140.
    Spence PM, Sriram V, Van Kaer L, Hobbs JA, Brutkiewicz RR (2001) Generation of cellular immunity to lymphocytic choriomeningitis virus is independent of CD1d1 expression. Immunology 104:168–174PubMedGoogle Scholar
  141. 141.
    Roberts TJ, Lin Y, Spence PM, Van Kaer L, Brutkiewicz RR (2004) CD1d1-dependent control of the magnitude of an acute antiviral immune response. J Immunol 172:3454–3461PubMedGoogle Scholar
  142. 142.
    Huber S, Sartini D, Exley M (2003) Role of CD1d in coxsackievirus B3-induced myocarditis. J Immunol 170:3147–3153PubMedGoogle Scholar
  143. 143.
    Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D (2002) Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583–594PubMedGoogle Scholar
  144. 144.
    Exley MA, He Q, Cheng O, Wang RJ, Cheney CP, Balk SP, Koziel MJ (2002) Cutting edge: compartmentalization of Th1-like noninvariant CD1d-reactive T cells in hepatitis C virus-infected liver. J Immunol 168:1519–1523PubMedGoogle Scholar
  145. 145.
    Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K, Koguchi Y, Nakayama T, Taniguchi M, Saito A (2001) Monocyte chemoattractant protein-1-dependent increase of Valpha14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J Immunol 167:6525–6532PubMedGoogle Scholar
  146. 146.
    Szalay G, Zugel U, Ladel CH, Kaufmann SH (1999) Participation of group 2 CD1 molecules in the control of murine tuberculosis. Microbes Infect 1:1153–1157PubMedGoogle Scholar
  147. 147.
    Bilenki L, Wang S, Yang J, Fan Y, Joyee AG, Yang X (2005) NKT cell activation promotes Chlamydia trachomatis infection in vivo. J Immunol 175:3197–3206PubMedGoogle Scholar
  148. 148.
    Exley MA, Bigley NJ, Cheng O, Tahir SM, Smiley ST, Carter QL, Stills HF, Grusby MJ, Koezuka Y, Taniguchi M, Balk SP (2001) CD1d-reactive T-cell activation leads to amelioration of disease caused by diabetogenic encephalomyocarditis virus. J Leukoc Biol 69:713–718PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. M. Behar
    • 1
  • S. A. Porcelli
    • 2
  1. 1.Division of Rheumatology, Immunology and AllergyBrigham and Women’s HospitalBostonUSA
  2. 2.Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations