Constraints for Argument Filterings

  • Harald Zankl
  • Nao Hirokawa
  • Aart Middeldorp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4362)


The dependency pair method is a powerful method for automatically proving termination of rewrite systems. When used with traditional simplification orders like LPO and KBO, argument filterings play a key role. In this paper we propose an encoding of argument filterings in propositional logic. By incorporating propositional encodings of simplification orders, the search for suitable argument filterings is turned into a satisfiability problem. Preliminary experimental results show that our logic-based approach is significantly faster than existing implementations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236, 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Codish, M., Lagoon, V., Stuckey, P.J.: Solving Partial Order Constraints for LPO Termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: Automating Dependency Pairs Using SAT Solvers. In: Proc. of the 8th International Workshop on Termination (2006), Extended version to appear in Proc. of the 13th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LNCS Google Scholar
  5. 5.
    Eén, N., Sörensson, N.: An Extensible SAT-Solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Giesl, J., Arts, T., Ohlebusch, E.: Modular Termination Proofs for Rewriting Using Dependency Pairs. Journal of Symbolic Computation 34(1), 21–58 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Hirokawa, N., Middeldorp, A.: Dependency Pairs Revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Hirokawa, N., Middeldorp, A.: Automating the Dependency Pair Method. Information and Computation 199(1-2), 172–199 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Kurihara, M., Kondo, H.: Efficient BDD Encodings for Partial Order Constraints with Application to Expert Systems in Software Verification. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 827–837. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Thiemann, R., Giesl, J., Schneider-Kamp, P.: Improved Modular Termination Proofs Using Dependency Pairs. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 75–90. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Zankl, H.: BDD and SAT Techniques for Precedence Based Orders. Master’s Thesis, University of Innsbruck (2006), Available at
  14. 14.
    Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for Argument Filterings. In: Proc. of the 8th International Workshop on Termination, pp. 50–54 (2006)Google Scholar
  15. 15.
    Zankl, H., Middeldorp, A.: KBO as a Satisfaction Problem. In: Proc. of the 8th International Workshop on Termination, pp. 55–59 (2006), Full version available at

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Harald Zankl
    • 1
  • Nao Hirokawa
    • 1
  • Aart Middeldorp
    • 1
  1. 1.Institute of Computer Science, University of InnsbruckAustria

Personalised recommendations