Advertisement

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory

  • Mohammad Ansari
  • Christos Kotselidis
  • Ian Watson
  • Chris Kirkham
  • Mikel Luján
  • Kim Jarvis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5022)

Abstract

Transactional Memory (TM) is a concurrent programming paradigm that aims to make concurrent programming easier than fine-grain locking, whilst providing similar performance and scalability. Several TM systems have been made available for research purposes. However, there is a lack of a wide range of non-trivial benchmarks with which to thoroughly evaluate these TM systems.

This paper introduces Lee-TM, a non-trivial and realistic TM benchmark suite based on Lee’s routing algorithm. The benchmark suite provides sequential, lock-based, and transactional implementations to enable direct performance comparison. Lee’s routing algorithm has several of the desirable properties of a non-trivial TM benchmark, such as large amounts of parallelism, complex contention characteristics, and a wide range of transaction durations and lengths. A sample evaluation shows unfavourable transactional performance and scalability compared to lock-based execution, in contrast to much of the published TM evaluations, and highlights the need for non-trivial TM benchmarks.

Keywords

Grid Cell Grid Block Complex Circuit Transactional Memory Benchmark Suite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Computing, pp. 204–213. ACM Press (1995)Google Scholar
  2. 2.
    Herlihy, M., Eliot, J., Moss, B.: Transactional memory: Architectural support for lock-free data structures. In: ISCA 1993: Proceedings of the 20th Annual International Symposium on Computer Architecture, pp. 289–300. ACM Press (1993)Google Scholar
  3. 3.
    Olukotun, K., Hammond, L.: The future of microprocessors. ACM Queue 3(7), 26–29 (2005)CrossRefGoogle Scholar
  4. 4.
    Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing software transactional memory. In: OOPSLA 2006: Proceedings of the 21st Annual Conference on Object-Oriented Programming Systems, Languages, and Applications, pp. 253–262. ACM Press (2006)Google Scholar
  5. 5.
    Saha, B., Ali-Reza Adl-Tabatabai, Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: a high performance software transactional memory system for a multi-core runtime. In: PPoPP 2006: Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 187–197. ACM Press, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Marathe, V., Spear, M., Herio, C., Acharya, A., Eisenstat, D., Scherer III, W., Scott, M.: Lowering the overhead of software transactional memory. In: TRANSACT 2006: First ACM SIGPLAN Workshop on Transactional Computing (June 2006)Google Scholar
  7. 7.
    Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Rubin, F.: The Lee path connection algorithm. IEEE Transactions on Computers C-23(9), 907–914 (1974)CrossRefGoogle Scholar
  10. 10.
    Scherer III, W., Scott, M.: Contention management in dynamic software transactional memory. In: CSJP 2004: Workshop on Concurrency and Synchronization in Java Programs (July 2004)Google Scholar
  11. 11.
    Scherer III, W., Scott, M.: Advanced contention management for dynamic software transactional memory. In: PODC 2005: Proceedings of the 24th Annual Symposium on Principles of Distributed Computing, pp. 240–248. ACM Press (2005)Google Scholar
  12. 12.
    Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention managers. In: PODC 2005: Proceedings of the 24th Annual Symposium on Principles of Distributed Computing, pp. 258–264. ACM Press (2005)Google Scholar
  13. 13.
    Guerraoui, R., Kapałka, M., Vitek, J.: STMBench7: A benchmark for software transactional memory. In: EuroSys 2007: Proceedings of the 2nd European Systems Conference, pp. 315–324. ACM Press (2007)Google Scholar
  14. 14.
    Minh, C.C., Trautmann, M., Chung, J.W., McDonald, A., Bronson, N., Casper, J., Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system with strong isolation guarantees. In: ISCA 2007: Proceedings of the 34th Annual International Symposium on Computer Architecture, pp. 69–80. ACM Press, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Watson, I., Kirkham, C., Luján, M.: A study of a transactional parallel routing algorithm. In: PACT 2007: Proceedings of the 16th International Conference on Parallel Architectures and Compilation Techniques, pp. 388–400. IEEE Computer Society Press (2007)Google Scholar
  16. 16.
    Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for dynamic-sized data structures. In: PODC 2003: Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing, pp. 92–101. ACM Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mohammad Ansari
    • 1
  • Christos Kotselidis
    • 1
  • Ian Watson
    • 1
  • Chris Kirkham
    • 1
  • Mikel Luján
    • 1
  • Kim Jarvis
    • 1
  1. 1.School of Computer ScienceUniversity of Manchester 

Personalised recommendations