Fast Point Multiplication on Elliptic Curves without Precomputation

  • Marc Joye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5130)

Abstract

Elliptic curves find numerous applications. This paper describes a simple strategy to speed up their arithmetic in right-to-left methods. In certain settings, this leads to a non-negligible performance increase compared to the left-to-right counterparts.

Keywords

Elliptic curve arithmetic binary right-to-left exponentiation mixed coordinate systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.hyperelliptic.org/EFD/jacobian.html
  2. 2.
    Bernstein, D.J., Lange, T.: Fast scalar multiplication on elliptic curves. In: Mullen, G., Panario, D., Shparlinski, I. (eds.) 8th International Conference on Finite Fields and Applications, Contemporary Mathematics. American Mathematical Society (to appear) Google Scholar
  3. 3.
    Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers 53(6), 760–768 (2004)CrossRefGoogle Scholar
  4. 4.
    Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics 7(4), 385–434 (1986)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Heidelberg (1993)MATHGoogle Scholar
  6. 6.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Fouque, P.-A., Valette, F.: The doubling attack - Why upwards is better than downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 269–280. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 129–146 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    IEEE 1363-2000. Standard specifications for public key cryptography. IEEE Standards (August 2000)Google Scholar
  10. 10.
    Knuth, D.E.: The Art of Computer Programming, 2nd edn. Addison-Welsey (1981)Google Scholar
  11. 11.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO Theoretical Informatics and Applications 24(6), 531–543 (1990)MATHMathSciNetGoogle Scholar
  15. 15.
    Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)MathSciNetGoogle Scholar
  16. 16.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, Heidelberg (1986)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marc Joye
    • 1
  1. 1.Thomson R&D France, Technology Group, Corporate Research, Security LaboratoryCesson-Sévigné CedexFrance

Personalised recommendations