ELKI: A Software System for Evaluation of Subspace Clustering Algorithms

  • Elke Achtert
  • Hans-Peter Kriegel
  • Arthur Zimek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5069)


In order to establish consolidated standards in novel data mining areas, newly proposed algorithms need to be evaluated thoroughly. Many publications compare a new proposition – if at all – with one or two competitors or even with a so called “naïve” ad hoc solution. For the prolific field of subspace clustering, we propose a software framework implementing many prominent algorithms and, thus, allowing for a fair and thorough evaluation. Furthermore, we describe how new algorithms for new applications can be incorporated in the framework easily.


Index Structure Subspace Cluster Data Mining Algorithm Software Framework Database Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  2. 2.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid prototyping for complex data mining tasks. In: Proc.KDD (2006)Google Scholar
  3. 3.
    Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database systems. In: Proc.VLDB (1995)Google Scholar
  4. 4.
    Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster method. The Computer Journal 16(1), 30–34 (1973)CrossRefMathSciNetGoogle Scholar
  5. 5.
    McQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematics, Statistics, and Probabilistics, vol. 1, pp. 281–297 (1967)Google Scholar
  6. 6.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39(1), 1–31 (1977)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc.KDD (1996)Google Scholar
  8. 8.
    Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proc.SDM (2003)Google Scholar
  9. 9.
    Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc.SIGMOD (1999)Google Scholar
  10. 10.
    Achtert, E., Böhm, C., Kröger, P.: DeLiClu: Boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 119–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc.SIGMOD (1998)Google Scholar
  12. 12.
    Aggarwal, C.C., Procopiuc, C.M., Wolf, J.L., Yu, P.S., Park, J.S.: Fast algorithms for projected clustering. In: Proc. SIGMOD (1999)Google Scholar
  13. 13.
    Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for high-dimensional data. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with local subspace preferences. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Müller-Gorman, I., Zimek, A.: Finding hierarchies of subspace clusters. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 446–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Müller-Gorman, I., Zimek, A.: Detection and visualization of subspace cluster hierarchies. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 152–163. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. ISMB (2000)Google Scholar
  18. 18.
    Yang, J., Wang, W., Wang, H., Yu, P.S.: δ-clusters: Capturing subspace correlation in a large data set. In: Proc. ICDE (2002)Google Scholar
  19. 19.
    Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proc. SIGMOD (2002)Google Scholar
  20. 20.
    Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc. SIGMOD (2000)Google Scholar
  21. 21.
    Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation connected objects. In: Proc. SIGMOD (2004)Google Scholar
  22. 22.
    Achtert, E., Böhm, C., Kröger, P., Zimek, A.: Mining hierarchies of correlation clusters. In: Proc. SSDBM (2006)Google Scholar
  23. 23.
    Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: Robust, complete, and efficient correlation clustering. In: Jonker, W., Petković, M. (eds.) SDM 2007. LNCS, vol. 4721. Springer, Heidelberg (2007)Google Scholar
  24. 24.
    Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: On exploring complex relationships of correlation clusters. In: Proc. SSDBM (2007)Google Scholar
  25. 25.
    Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Robust clustering in arbitrarily oriented subspaces. In: Proc. SDM (2008)Google Scholar
  26. 26.
    Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: A general framework for increasing the robustness of PCA-based correlation clustering algorithms. In: Proc. SSDBM (2008)Google Scholar
  27. 27.
    Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access method for similarity search in metric spaces. In: Proc. VLDB (1997)Google Scholar
  28. 28.
    Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In: Proc.SIGMOD (2006)Google Scholar
  29. 29.
    Achtert, E., BÖhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Approximate reverse k-nearest neighbor search in general metric spaces. In: Proc. CIKM (2006)Google Scholar
  30. 30.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and robust access method for points and rectangles. In: Proc. SIGMOD, pp. 322–331 (1990)Google Scholar
  31. 31.
    Yang, C., Lin, K.I.: An index structure for efficient reverse nearest neighbor queries. In: Proc. ICDE (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Elke Achtert
    • 1
  • Hans-Peter Kriegel
    • 1
  • Arthur Zimek
    • 1
  1. 1.Institute for InformaticsLudwig-Maximilians-Universität München 

Personalised recommendations