Caching Dynamic Skyline Queries

  • Dimitris Sacharidis
  • Panagiotis Bouros
  • Timos Sellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5069)


Given a query tuple q, the dynamic skyline query retrieves the tuples that are not dynamically dominated by any other in the data set with respect to q. A tuple dynamically dominates another, w.r.t. q, if it has closer to q’s values in all attributes, and has strictly closer to q’s value in at least one. The dynamic skyline query can be treated as a standard skyline query, subject to the transformation of all tuples’ values. In this work, we make the observation that results to past dynamic skyline queries can help reduce the computation cost for future queries. To this end, we propose a caching mechanism for dynamic skyline queries and devise a cache-aware algorithm. Our extensive experimental evaluation demonstrates the efficiency of this mechanism compared to standard techniques without caching.


skyline dynamic skyline query caching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430 (2001)Google Scholar
  2. 2.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Transactions on Database Systems 30(1), 41–82 (2005)CrossRefGoogle Scholar
  3. 3.
    Li, C., Ooi, B.C., Tung, A.K.H., Wang, S.: Dada: a data cube for dominant relationship analysis. In: SIGMOD Conference, pp. 659–670 (2006)Google Scholar
  4. 4.
    Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: VLDB, pp. 291–302 (2007)Google Scholar
  5. 5.
    Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In: ICDE, pp. 796–805 (2007)Google Scholar
  6. 6.
    Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB, pp. 751–762 (2006)Google Scholar
  7. 7.
    Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Journal of the ACM 22(4), 469–476 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)Google Scholar
  9. 9.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, pp. 717–816 (2003)Google Scholar
  10. 10.
    Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB, pp. 301–310 (2001)Google Scholar
  11. 11.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for skyline queries. In: VLDB, pp. 275–286 (2002)Google Scholar
  12. 12.
    Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation of the skyline cube. In: VLDB, pp. 241–252 (2005)Google Scholar
  13. 13.
    Chan, C.Y., Eng, P.K., Tan, K.L.: Stratified computation of skylines with partially-ordered domains. In: SIGMOD Conference, pp. 203–214 (2005)Google Scholar
  14. 14.
    Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: VLDB, pp. 15–26 (2007)Google Scholar
  15. 15.
    Random dataset generator for SKYLINE operator evaluation,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dimitris Sacharidis
    • 1
  • Panagiotis Bouros
    • 1
  • Timos Sellis
    • 1
    • 2
  1. 1.National Technical University of AthensAthensGreece
  2. 2.Institute for the Management of Information Systems — R.C. AthenaAthensGreece

Personalised recommendations