A General Framework for Increasing the Robustness of PCA-Based Correlation Clustering Algorithms

  • Hans-Peter Kriegel
  • Peer Kröger
  • Erich Schubert
  • Arthur Zimek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5069)

Abstract

Most correlation clustering algorithms rely on principal component analysis (PCA) as a correlation analysis tool. The correlation of each cluster is learned by applying PCA to a set of sample points. Since PCA is rather sensitive to outliers, if a small fraction of these points does not correspond to the correct correlation of the cluster, the algorithms are usually misled or even fail to detect the correct results. In this paper, we evaluate the influence of outliers on PCA and propose a general framework for increasing the robustness of PCA in order to determine the correct correlation of each cluster. We further show how our framework can be applied to PCA-based correlation clustering algorithms. A thorough experimental evaluation shows the benefit of our framework on several synthetic and real-world data sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc.SIGMOD (2000)Google Scholar
  2. 2.
    Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation connected objects. In: Proc.SIGMOD (2004)Google Scholar
  3. 3.
    Tung, A.K.H., Xu, X., Ooi, C.B.: CURLER: Finding and visualizing nonlinear correlated clusters. In: Proc.SIGMOD (2005)Google Scholar
  4. 4.
    Achtert, E., Böhm, C., Kröger, P., Zimek, A.: Mining hierarchies of correlation clusters. In: Proc.SSDBM (2006)Google Scholar
  5. 5.
    Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: Robust, complete, and efficient correlation clustering. In: Jonker, W., Petković, M. (eds.) SDM 2007. LNCS, vol. 4721. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: On exploring complex relationships of correlation clusters. In: Proc.SSDBM (2007)Google Scholar
  7. 7.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high dimensional spaces? In: Proc.VLDB (2000)Google Scholar
  9. 9.
    Aggarwal, C.C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Chakrabarti, K., Mehrotra, S.: Local dimensionality reduction: A new approach to indexing high dimensional spaces. In: Proc.VLDB (2000)Google Scholar
  11. 11.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc.KDD (1996)Google Scholar
  12. 12.
    Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc.SIGMOD (1999)Google Scholar
  13. 13.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004)MATHCrossRefGoogle Scholar
  14. 14.
    Liebl, B., Nennstiel-Ratzel, U., von Kries, R., Fingerhut, R., Olgemöller, B., Zapf, A., Roscher, A.A.: Very high compliance in an expanded MS-MS-based newborn screening program despite written parental consent. Preventive Medicine 34(2), 127–131 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hans-Peter Kriegel
    • 1
  • Peer Kröger
    • 1
  • Erich Schubert
    • 1
  • Arthur Zimek
    • 1
  1. 1.Institute for InformaticsLudwig-Maximilians-Universität München 

Personalised recommendations