Advertisement

ViP: A User-Centric View-Based Annotation Framework for Scientific Data

  • Qinglan Li
  • Alexandros Labrinidis
  • Panos K. Chrysanthis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5069)

Abstract

Annotations play an increasingly crucial role in scientific exploration and discovery, as the amount of data and the level of collaboration among scientists increase. In this paper, we introduce ViP, a user-centric, view-based annotation framework that promotes annotations as first-class citizens. ViP introduces novel ways of propagating annotations, empowering users to express their preferences over the time and network semantics of annotations. To efficiently support such novel functionality, ViP utilizes database views and introduces new caching techniques. Through an extensive experimental study on a real system, we show that ViP can seamlessly introduce new annotation propagation semantics while significantly improving the performance over the current state of the art.

Keywords

Data Item Annotation Propagation Network Semantic Query Time Extensive Experimental Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: A system for data, uncertainty, and lineage. In: Proc. of the VLDB conference (2006)Google Scholar
  2. 2.
    Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with uncertainty and lineage. In: Proc. of the VLDB conference, pp. 953–964 (2006)Google Scholar
  3. 3.
    Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management system for relational databases. In: Proc. of the VLDB conference, pp. 900–911 (2004)Google Scholar
  4. 4.
    Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In: Proc. of the ACM SIGMOD conference, pp. 539–550 (2006)Google Scholar
  5. 5.
    Buneman, P., Khanna, S., Tajima, K., Tan, W.-C.: Archiving scientific data. ACM Transaction Database Systems 29(1), 2–42 (2004)CrossRefGoogle Scholar
  6. 6.
    Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annotations through views. In: Proc. of the PODS conference (2002)Google Scholar
  8. 8.
    Chiticariu, L., Tan, W.-C.: Debugging schema mappings with routes. In: Proc. of the VLDB conference, pp. 79–90 (2006)Google Scholar
  9. 9.
    Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: DBNotes: a post-it system for relational databases based on provenance. In: Proc. of the ACM SIGMOD conference (2005)Google Scholar
  10. 10.
    Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving views. In: Proc. of the CIKM, pp. 632–641 (2006)Google Scholar
  11. 11.
    Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: Proc. of the ICDE, pp. 367–378 (2000)Google Scholar
  12. 12.
    Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. The VLDB Journal, pp. 471–480 (2001)Google Scholar
  13. 13.
    Eltabakh, M.Y., Ouzzani, M., Aref, W.G.: bdbms – a database management system for biological data. In: Proc. of the CIDR (January 2007)Google Scholar
  14. 14.
    Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying databases through colors and blocks. In: Proc. of the ICDE, p. 82 (2006)Google Scholar
  15. 15.
    Jagadish, H.V., Olken, F.: Database management for life sciences research. The SIGMOD Record 33(2), 15–20 (2004)CrossRefGoogle Scholar
  16. 16.
    Koutrika, G., Ioannidis, Y.: Personalization of queries in database systems. In: Proc. of the ICDE, p. 597 (2004)Google Scholar
  17. 17.
    Labrinidis, A., Qu, H., Xu, J.: Quality contracts for real-time enterprises. In: Bussler, C.J., Castellanos, M., Dayal, U., Navathe, S. (eds.) BIRTE 2006. LNCS, vol. 4365, pp. 143–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Lauzac, S.W., Chrysanthis, P.K.: Personalizing information gathering for mobile database clients. In: Proc. of the ACM SAC, March 2002, pp. 49–56 (2002)Google Scholar
  19. 19.
    Melnik, S., Adya, A., Bernstein, P.A.: Compiling mappings to bridge applications and databases. In: Proc. of the ACM SIGMOD conference, pp. 461–472. ACM, New York (2007)Google Scholar
  20. 20.
    Qu, H., Labrinidis, A., Mosse, D.: Unit: User-centric transaction management in web-database systems. In: Proc. of the ICDE, April 2006, pp. 1–10 (2006)Google Scholar
  21. 21.
    Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata. In: Proc. of the ACM SIGMOD conference, pp. 401–412 (2007)Google Scholar
  22. 22.
    Tan, W.-C.: Containment of relational queries with annotation propagation. In: Proc. of the DBPL conference (2003)Google Scholar
  23. 23.
    Tan, W.-C.: Provenance in databases: Past, current, and future. Special Issue on Data Provenance, Bulletin of the Technical Commmittee on Data Engineering 32(4) (December 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Qinglan Li
    • 1
  • Alexandros Labrinidis
    • 1
  • Panos K. Chrysanthis
    • 1
  1. 1.Advanced Data Management Technologies Laboratory Department of Computer ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations