Predicting Future User Behaviour in Interactive Live TV

  • Martin Gude
  • Stefan M. Grünvogel
  • Andreas Pütz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5066)

Abstract

Recommender systems are a means of personalisation providing their users with personalised recommendations of items that would possibly suit the users needs. They are used in a broad area of contexts where items are somehow linked to users. The creation of recommendations of interactive live TV suffers from several inherent problems, e.g. the impossibility to foresee the contents of the next items or the reactions of the user to the changing programme.

This paper proposes an algorithm for building personalised streams within interactive live TV. The development of the algorithm comprises a basic model for users and media items. A first preliminary evaluation of the alogithm is executed and the results discussed.

Keywords

recommender system interactive live TV multistream 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amazon.com: Site features:recommendations (2007)Google Scholar
  2. 2.
    Schachter, J.: del.icio.us: people who like recommendations also likes. (2005)Google Scholar
  3. 3.
    last.fm (2007), http://last.fm
  4. 4.
    Reddy, S., Mascia, J.: Lifetrak: music in tune with your life. In: Proceedings of the 1st ACM international Workshop on Human-Centered Multimedia, HCM 2006, Santa Barbara, California, USA, October 27-27, 2006, pp. 25–34. ACM Press, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing?: how recommender system interfaces affect users’ opinions. In: CHI 2003 Extended Abstracts on Human Factors in Computing Systems, Ft. Lauderdale, Florida, USA, April 05-10, 2003, pp. 585–592. ACM Press, New York (2003)CrossRefGoogle Scholar
  6. 6.
    O’Donovan, J., Smyth, B.: Trust in recommender systems. In: IUI 2005: Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, pp. 167–174. ACM Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering (2001)Google Scholar
  8. 8.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  9. 9.
    Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: Proceedings of the 16th international Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 08-12, 2007, pp. 211–220. ACM Press, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT 2006, Odense, Denmark, August 22-25, 2006, pp. 31–40. ACM Press, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Communications of the ACM 30(11), 964–971 (1987)CrossRefGoogle Scholar
  12. 12.
    LIVE: Live staging of media events (2007), http://www.ist-live.org
  13. 13.
    MECiTV: Media collaboration for interactive tv (2004), http://www.meci.tv

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Gude
    • 1
  • Stefan M. Grünvogel
    • 1
  • Andreas Pütz
    • 2
  1. 1.Cologne University of Applied SciencesKölnGermany
  2. 2.Pixelpark AGKölnGermany

Personalised recommendations