A Fuzzy Segmentation of Salient Region of Interest in Low Depth of Field Image

  • KeDai Zhang
  • HanQing Lu
  • ZhenYu Wang
  • Qi Zhao
  • MiYi Duan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4351)


Unsupervised segmenting region of interest in images is very useful in content-based application such as image indexing for content-based retrieval and target recognition. The proposed method applies fuzzy theory to separate the salient region of interest from background in low depth of field (DOF) images automatically. First the image is divided into regions based on mean shift method and the regions are characterized by color features and wavelet modulus maxima edge point densities. And then the regions are described as fuzzy sets by fuzzification. The salient region interest and background are separated by defuzzification on fuzzy sets finally. The segmentation method is full automatic and without empirical parameters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, A.: The Camera. New York Graphic Soc., Boston (1980)Google Scholar
  2. 2.
    Nayar, S.K., Nakagawa, Y.: Shape from Focus: An Effective Approach for Rough Surfaces. IEEE Trans. on PAMI 16(8), 824–831 (1994)Google Scholar
  3. 3.
    Chaudhuri, S., Rajagopalan, A.: Depth from defocus: a real aperture imaging approach. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Liu, Y.F.: A Unified Approach to Image Focus and Defocus Analysis, Ph.D. Thesis, Dept. of Electrical Engg, SUNY at Stony Brook (1998)Google Scholar
  5. 5.
    Wang, J.Z., Li, J., Gray, R.M., Wiederhold, G.: Unsupervised Multiresolution Segmentation for Images with Low Depth of Field. IEEE Trans. on PAMI 23(1), 85–90 (2001)Google Scholar
  6. 6.
    Zhang, K., Lu, H.: Automatic Salient Regions Extraction Based on Edge and Region Integration. In: IEEE International Symposium on Industrial Electronics, Canada (2006)Google Scholar
  7. 7.
    Tsai, D.M., Wang, H.J.: Segmenting Focused Objects in Complex Visual Images. Pattern Recognition Letters 19, 929–940 (1998)CrossRefGoogle Scholar
  8. 8.
    Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Info. Theory 21, 32–40 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Comaniciu, D.: An Algrithm for Data Driven Bandwidth Selection. IEEE Trans. Patt. Anal. Mach. Intell. 25(2) (February 2003)Google Scholar
  10. 10.
    Comaniciu, D., Meer, P.: Distribution Free Decomposition of Multivariate Data. Pattern Analysis Application 2, 22–30 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Comaniciu, D., Meer, P.: Mean shift Analysis and Applications. In: IEEE Int’l Conf. Comp. Vis., Kerkyra, Greece, pp. 1197–1203 (1999)Google Scholar
  12. 12.
    Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelet. IEEE Trans. Info. Theory 38, 617–643 (1992)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic, New York (1980)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • KeDai Zhang
    • 1
  • HanQing Lu
    • 1
  • ZhenYu Wang
    • 1
  • Qi Zhao
    • 2
  • MiYi Duan
    • 2
  1. 1.National Laboratory of Pattern Recognition Institute of AutomationCAS 
  2. 2.Beijing Graphics InstituteBeijingChina

Personalised recommendations