Complete Determinacy and Subsystems of Second Order Arithmetic

  • Takako Nemoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)


This paper investigates the determinacy and the complete determinacy of infinite games, following reverse mathematics program whose purpose is to find the set comprehension axioms that are necessary and sufficient for these statements in the frame of second order arithmetic. In some sense, this research clarifies how complex oracles we need to obtain the algorithms which give a winning strategies and which determine the winning positions for the players. It will be shown that, depending on the complexity of the rules of games, the complexity of the oracles changes drastically and that determinacy and complete determinacy statements are not always equivalent.


infinite game determinacy complete determinacy Wadge class reverse mathematics second order arithmetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Louveau, A.: Some results in the Wadge hierarchy of Borel sets, Cabal Seminar 79-81. Lecture Note in Mathematics, vol. 1019, pp. 28–55. Springer, Heidelberg (1983)Google Scholar
  2. 2.
    Medsalem, M.O., Tanaka, K.: Δ 0 3-determinacy, comprehension and induction. J. Symbolic Logic 72, 452–462 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Medsalem, M.O., Tanaka, K.: Weak determinacy and iterations of inductive definitions. In: Proc. Computable Prospects of Infinity. World Scientific, Singapore (to appear)Google Scholar
  4. 4.
    Montalbán, A.: Indecomposable linear orderings and Theories of Hyperarithmetic Analysis. J. Math. Log. 6, 89–120 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Nemoto, T., MedSalem, M.O., Tanaka, K.: Infinite games in the Cantor space and subsystems of second order arithmetic. Math. Log. Q. 53, 226–236 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Nemoto, T.: Determinacy of Wadge classes and subsystems of second order arithmetic (submitted),
  7. 7.
    Nießner, F.: Nondeterministic tree automata. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite games, pp. 152–155. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  9. 9.
    Tanaka, K.: Weak axioms of determinacy and subsystems of analysis I: Δ 0 2-games Z. Math. Logik Grundlag. Math. 36, 481–491 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Tanaka, K.: Weak axioms of determinacy and subsystems of analysis II: Σ 0 2-games. Ann. Pure Appl. Logic 52, 181–193 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Welch, P.: Weak systems of determinacy and arithmetical quasi-inductive definitions,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Takako Nemoto
    • 1
  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations