Implementing Spi Calculus Using Nominal Techniques

  • Temesghen Kahsai
  • Marino Miculan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)

Abstract

The aim of this work is to obtain an interactive proof environment based on Isabelle/HOL for reasoning formally about cryptographic protocols, expressed as processes of the spi calculus (a π-calculus with cryptographic primitives). To this end, we formalise syntax, semantics, and hedged bisimulation, an environment-sensitive bisimulation which can be used for proving security properties of protocols. In order to deal smoothly with binding operators and reason up-to α-equivalence of bound names, we adopt the new Nominal datatype package. This simplifies both the encoding, and the formal proofs, which turn out to correspond closely to “manual proofs”.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols. Nord. J. Comput. 5(4), 267 (1998)MathSciNetMATHGoogle Scholar
  2. 2.
    Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi calculus. Journal of Information and Computation 148(1), 1–70 (1999)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Armando, A., Basin, D.A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma, P.H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA tool for the automated validation of internet security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Bengtson, J., Parrow, J.: Formalising the π-calculus using nominal logic. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 63–77. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Blanchet, B.: From secrecy to authenticity in security protocols. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for security protocols. In: Proc. 20th LICS, pp. 331–340. IEEE (2005)Google Scholar
  7. 7.
    Boreale, M., Nicola, R.D., Pugliese, R.: Proof techniques for cryptographic processes. SIAM J. Comput. 31(3), 947–986 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Borgström, J., Nestmann, U.: On bisimulations for the spi calculus. Mathematical Structures in Computer Science 15(3), 487–552 (2005)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Clarke, E.M., Jha, S., Marrero, W.: Verifying security protocols with brutus. ACM Trans. Softw. Eng. Methodol. 9(4), 443–487 (2000)CrossRefGoogle Scholar
  11. 11.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: Proc. 14th LICS, pp. 214–224. IEEE (1999)Google Scholar
  12. 12.
    Hirschkoff, D.: Bisimulation proofs for the π-calculus in the Calculus of Constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Honsell, F., Miculan, M., Scagnetto, I.: π-calculus in (co)inductive type theory. Theoretical Computer Science 253(2), 239–285 (2001)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Hüttel, H.: Deciding framed bisimilarity. In: Proceedings of Infinity 2002. Electronic Notes in Theoretical Computer Science, vol. 68, pp. 1–18 (2003)Google Scholar
  15. 15.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inform. and Comput. 100(1), 1–77 (1992)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Mitchell, J.C., Mitchell, M., Stern, U.: Automated analysis of cryptographic protocols using Murφ. In: IEEE Symposium on Security and Privacy, pp. 141–151. IEEE Computer Society (1997)Google Scholar
  17. 17.
    Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Nipkow, T., Paulson, L.C.: Isabelle-91. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 673–676. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6(1-2), 85–128 (1998)Google Scholar
  20. 20.
    Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information and Computation 186, 165–193 (2003)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. In: Proc. LICS, pp. 293–302. IEEE Computer Society (2007)Google Scholar
  22. 22.
    Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Wenzel, M.: Isar - a generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Yu, S., Luo, Z.: Implementing a model checker for LEGO. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 442–458. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Temesghen Kahsai
    • 1
  • Marino Miculan
    • 2
  1. 1.Department of Computer ScienceSwansea UniversityUK
  2. 2.DiMIUniversity of UdineItaly

Personalised recommendations