Satellite Aerosol Remote Sensing over Land pp 361-381

Part of the Springer Praxis Books book series (PRAXIS)

Remote sensing data combinations: superior global maps for aerosol optical depth

  • Stefan Kinne

Abstract

Aerosol remote sensing from space is predominantly based on sensor data of reflected sunlight in solar spectral regions, where the attenuation by trace-gases can be neglected or easily accounted for. But even at these spectral regions retrievals of aerosol properties are by no means a simple task, as explained in the previous chapters of this book. This is mostly due to the following major reasons:
  1. 1.

    Cloud contamination. The solar light reflection attributed to aerosol is small compared to that of clouds and identifying cloud-free and cloud-influence-free regions is a challenge, especially with sensor limitations to spatial resolution. Also at low sun-elevations retrievals near clouds are complicated by cloud shadow scene darkening or side-scatter scene brightening.

     
  2. 2.

    Surface contributions. The solar reflection attributed to aerosol can be smaller than surface signals. Thus, surface albedo (also as function of the sun-elevation) needs to be known to high accuracy. To minimize the surface albedo problem innovative methods are applied. They rely on spectral dependencies (Kaufman et al., 1997), multi-angular views (Martonchik et al., 1998), polarization (Deuzé et al., 1999) or retrievals in the UV (Torres et al., 2002). Higher and variable surface albedos still remain the major reason that most aerosol satellite products have no or only limited coverage over land.

     
  3. 3.

    A-priori assumptions. The relationship that associates changes of solar reflection to aerosol amount in cloud-free conditions is modulated by aerosol composition and even atmospheric environment. Even when combining different sensor data sources, any potential solution is under-determined in the context of dependencies to aerosol amount, particle size, shape and composition. Thus, a-priori assumptions are required. Some of these assumptions, usually to absorption, size and shape, have been locally and/or seasonally validated, but their regional (or even global) and annual application in the context of aerosol temporal and spatial variability is rarely justifiable.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, K., 2006: Aerosol optical characteristics in Asia from measurements of SKYNET sky radiometers, in IRS 2004: Current Problems in Atmospheric Radiation, H. Fischer and B-J. Sohn (Eds), A. Deepak, Hampton, VA, 311–313.Google Scholar
  2. Deuzé, J.L., M. Herman and P. Goloub, 1999: Characterization of aerosols over ocean from POLDER/ ADEOS-1, Geophys. Res. Lett., 26, 1421–1424.CrossRefGoogle Scholar
  3. Deuzé, J.L, F.M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry and D. Tanré, 2001: Remote sensing of aerosol over land surfaces from POLDER/ ADEOS-1 polarized measurements, J. Geophys. Res., 106, 4912–4926.CrossRefGoogle Scholar
  4. Diner, D.J., J.V. Martonchik, R.A. Kahn, B. Pinty, N. Gobron, D.L. Nelson, and B.N. Holben: Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Rem. Sens. Environ 94, 155–171, 2005.CrossRefGoogle Scholar
  5. Geogdzhyev, I., M. Mishchenko, W. Rossow, B. Cairns and A. Lacis, 2002: Global 2-channel AVHRR retrieval of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data, J. Atmos. Sci., 59, 262–278.CrossRefGoogle Scholar
  6. Holben, B., T. Eck, I. Slutsker, D. Tanré, J. Buis, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenau, I. Jankowiak and A. Smirnov, 1998: AERONET, a federated instrument network and dataarchive for aerosol characterization, Rem. Sens. Environ., 66, 1–66.CrossRefGoogle Scholar
  7. Kahn, R., P. Banerjee, D. McDonald and D.J. Diner, 1998: Sensitivity of multi-angle imaging to aerosol optical depth and to pure particle size distribution and composition over ocean, J. Geophys. Res., 103, 32195–32213.CrossRefGoogle Scholar
  8. Kaufman, Y., D. Tanré, L. Remer, E. Vermote, D. Chu and B. Holben, 1997: Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS, J. Geophys. Res., 102, 17051–17061.CrossRefGoogle Scholar
  9. Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, ø. Seland, P. Stier, T. Takemura and X. Tie, 2006: An AeroCom initial assessment — optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 1815–1834.Google Scholar
  10. Liu, L. and M.I. Mishchenko, 2008: Toward unified satellite climatology of aerosol properties: direct comparisons of advanced level 2 aerosol products, J. Quant. Spectr. Rad. Transfer, 109, 2376–2385, doi:10.1016/j.jqsrt.2008.05.003.CrossRefGoogle Scholar
  11. Martonchik J.V., D.J. Diner, R.A. Kahn, T.P. Ackerman, M.E. Verstraete, B. Pinty and H.R. Gordon, 1998: Techniques for the retrieval of aerosol properties over land and ocean using multi-angle imaging, IEEE Trans. Geosci. Remote Sens., 36, 1212–1227.CrossRefGoogle Scholar
  12. Remer, L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V Martins, R.-R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote and B.N. Holben, 2005: The MODIS aerosol algorithm, products and validation, J. Atmos. Sci., 62, 947–973.CrossRefGoogle Scholar
  13. Schulz, M., C. Textor, S. Kinne, S. Guibert, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, ø. Seland, P. Stier, T. Takemura and X. Tie, 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys. Disc., 6, 5095–5136.CrossRefGoogle Scholar
  14. Stowe L., A. Ignatov and R. Singh, 1997: Development, validation and potential enhancements to the second generation operational aerosol product at NOAA/NESDIS, J. Geophys. Res. 102, (D14), 16923–16934.CrossRefGoogle Scholar
  15. Tanré, D., Y.J. Kaufman, M. Herman and S. Mattoo, 1991: Remote Sensing of aerosol properties over ocean using the MODIS/EOS spectral radiances, J. Geophys. Res., 102, 16971–16988.CrossRefGoogle Scholar
  16. Torres, O., P.K. Barthia, J.R. Herman, A. Sinyuk, P. Ginoux and B. Holben, 2002: A long-term record of aerosol optical depth from TOMS observations and comparisons to AERONET measurements. J. Atmos. Sci. 59, 398–413.CrossRefGoogle Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2009

Authors and Affiliations

  • Stefan Kinne
    • 1
  1. 1.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations