Polarimetric remote sensing of aerosols over land surfaces

  • Brian Cairns
  • Fabien Waquet
  • Kirk Knobelspiesse
  • Jacek Chowdhary
  • Jean-Luc Deuzé
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Writing from the S.S. Narkunda, near Aden, [1921] that using a Nicol prism ‘serves to cut off a great deal of the blue atmospheric “haze” which usually envelops a distant view, and mostly consists of polarized light. ’ Although the reason for the color and polarization of the sky had been explained some time before by [1871], later Lord Rayleigh, and the neutral points, where the polarization of the sky becomes zero, had already been named after their discoverers Arago [Barral, 1858], [1840] and [1842], this simple observation of Raman’s was still considered noteworthy, because of the difference between the behavior of the object being observed and the haze. The reason for this difference is that light scattered by molecules and small aerosol is strongly polarized in a plane perpendicular to the scattering plane (the plane defined by the sun, the object being viewed and the observer) while light scattered by surfaces is only weakly polarized. Thus, when Raman oriented the polarizer to transmit light in the plane parallel to the scattering plane the contributions from light scattered by aerosols and molecules were suppressed while the lighthouse was made more visible (had more contrast). This difference between the polarizing properties of aerosols and molecules as compared to surfaces is used by modern polarimetric remote sensing instruments to determine the amount, size and type of aerosols that are present above the surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, T.P., and G.M. Stokes, 2003: The atmospheric radiation measurement program, Physics Today, 56, DOI:10.1063/1.1554135.Google Scholar
  2. Babinet, J., 1840: Sur un nouveau point neutre dans l’atmosphere, C. R. Acad. Sci. Paris, 11, 618–620.Google Scholar
  3. Barral, M.J.A., 1858: Oeuvres de Francois Arago I-V, Gide, Paris.Google Scholar
  4. Belward, A.S., J.E. Estes, K.D. Kline, 1999: The IGBP-DIS global 1-km land-cover data set discover: A project overview, Photogramm. Eng. Rem. Sensing, 65, 1013–1020.Google Scholar
  5. Bréon, RM., D. Tanré, P. Leconte, and M. Herman, 1995: Polarized reflectance of bare soils and vegetation: measurements and models, IEEE Trans. Geosci. Remote Sens., 33, 487–499.CrossRefGoogle Scholar
  6. Brewster, D., 1842: On the existence of a new neutral point and two secondary neutral points, Rep. Brit.-Assoc. Adv. Sci, 2, 13–25.Google Scholar
  7. Cairns, B., L.D. Travis, and E.E. Russell, 1999: The Research Scanning Polarimeter: calibration and ground-based measurements, Proc. SPIE, 3754, 186–197.CrossRefGoogle Scholar
  8. Chipman, R.A., 1994: Polarimetry, in Handbook of Optics: Devices, Measurements and Properties, 2nd edn. M. Bass (Ed.), McGraw-Hill, New York, Vol. II, pp. 1–37.Google Scholar
  9. Chowdhary, J. et al., 2005: Retrieval of aerosol scattering and absorption properties from photo-polarimetric observations over the ocean during the CLAMS experiment, J. Atmos. Sci., 62, 1093–1117, doi:10.1175/JAS3389.1.CrossRefGoogle Scholar
  10. Coulson, K.L., 1988: Polarization and Intensity of Light in the Atmosphere, A Deepak, Hampton, VA. Google Scholar
  11. d’Almeida, G.A., P. Koepke, and E.P. Shettle, 1991: Atmospheric Aerosols, Global Climatology and Radiative Characteristics, A. Deepak, Hampton, VA.Google Scholar
  12. Deschamps et al., 1994: The POLDER mission: instrument characteristics and scientific objectives, IEEE Trans. Geosci. Remote Sens., 32, 598–615.CrossRefGoogle Scholar
  13. Deuzé, J.-L. et al., 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements, J. Geophys. Res., 106, 4913–4926.CrossRefGoogle Scholar
  14. Diner, D. J. et al., 2007: Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing, Appl. Opt, 46, 8428–8440.CrossRefGoogle Scholar
  15. Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696.CrossRefGoogle Scholar
  16. Dubovik, O. et al., 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608.CrossRefGoogle Scholar
  17. Elias, T., B. Cairns, and J. Chowdhary J., 2004: Surface optical properties measured by the airborne research scanning polarimeter during the CLAMS experiment, in Remote Sensing of Clouds and the Atmosphere VIII, K.P. Schäfer, A. Cameron, M.R. Carleer, R.H. Picard (Eds), Proc. SPIE, 5235(#19), SPIE, Bellingham, WA, pp. 595–606.Google Scholar
  18. Fan, X., P. Goloub, J.-L. Deuzé, H. Chen, W. Zhang, D. Tanré, and Z. Li, 2008: Evaluation of PARASOL aerosol retrieval over North East Asia, Rem. Sens. Env, 112, 697–707.CrossRefGoogle Scholar
  19. Fast, J.D. et al., 2007: A meteorological overview of the MILAGRO field campaigns, Atmos. Chem. Phys., 7, 2233–2257.CrossRefGoogle Scholar
  20. Hair, J.W. et al., 2008: Airbonc High Spectral Resolution Lidar for profiling aerosol optical properties, Appl. Opt, 47, 6734–6752, doi:10.1364/AO.47.006734.CrossRefGoogle Scholar
  21. Fougnie, B., G. Bracco, B. Lafrance, C. Ruffel, O. Hagolle, and C. Tinel, 2007: PARASOL in-flight calibration and performance, Appl. Opt, 46, 5435–5451.CrossRefGoogle Scholar
  22. Grant, L., C.S.T. Daughtry, and V.C. Vanderbilt, 1993: Polarized and specular reflectance variation with leaf surface features, Physiologia Plantarum, 88, 1–9.CrossRefGoogle Scholar
  23. Hagolle, O. et al., 1999: Results of POLDER in-flight calibration, IEEE Trans. Geosci. Remote Sens., 37, 1550–1566.CrossRefGoogle Scholar
  24. Hansen, J.E., and L.D. Travis, 1974: Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610.CrossRefGoogle Scholar
  25. Hasekamp, O.P., and J. Landgraf, 2007: Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements, Appl. Opt, 46, 3332–3344, doi:10.1364/AO.46.003332.CrossRefGoogle Scholar
  26. Herman, M., et al., 2005: Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model, J. Geophys. Res., 110, D10S02, doi:10.1029/ 2004JD004798.CrossRefGoogle Scholar
  27. Holben, B., et al., 1998: AERONET — a federated instrument network and data archive for aerosol characterization. Rem. Sens. Environ., 66, 1–16.CrossRefGoogle Scholar
  28. Jones, S., F. Iannarilli, and P. Kebabian, 2004: Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter, Opt. Express, 12, 6559–6573.CrossRefGoogle Scholar
  29. Kaufman, Y. J. et al., 1997: Remote sensing of tropospheric aerosol from EOS-MODIS over the land using dark targets and dynamic aerosol models. J. Geophys. Res., 102, 17051–17067.CrossRefGoogle Scholar
  30. Kawata, Y., 1978: Circular polarization of sunlight reflected by planetary atmospheres, Icarus, 33, 217–232.CrossRefGoogle Scholar
  31. Keller, C.U., 2002: Instrumentation for astrophysical spectropolarimetry, in Astrophysical Spectropolarimetry, J. Trujillo-Bueno, F. Moreno-Insertis, and F. Sánchez (Eds), Cambridge University Press, Cambridge, UK, pp. 303–354.Google Scholar
  32. Lafrance, B., 1997: Modélisation simplifiée de la lumière polarisée émergeant de l’atmosphère. Correction de l’impact des aérosols stratosphériques sur les mesures de POLDER. Thèse, Université des Sciences et Techniques de Lille. Lebsock, M.D., T.S. L’Ecuyer, and G.L. Stephens, 2007: Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrieval, J. Geophys. Res., 112, doi:10.1029/2007JD008535.Google Scholar
  33. Mishchenko, M.I., B. Cairns, J.E. Hansen, L.D. Travis, R. Burg, Y.J. Kaufman, J.V Martins, and E.P. Shettle 2004. Monitoring of aerosol forcing of climate from space: analysis of measurement requirements. J. Quant. Spectrosc. Radiat. Transfer 88, 149–161, doi:10.1016/j.jqsrt.2004.03.030.CrossRefGoogle Scholar
  34. Mishchenko, M.I., L.D. Travis, and A.A. Lacis, 2006: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge University Press, Cambridge, UK.Google Scholar
  35. Mishchenko, M.I., B. Cairns, G. Kopp, C.F. Schueler, B.A. Fafaul, J.E. Hansen, R.J. Hooker, T. Itchkawich, H.B. Maring, and L.D. Travis, 2007: Precise and accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission. Bull. Amer. Meteorol. Soc., 88, 677–691, doi: 10.1175/BAMS-88-5-677.CrossRefGoogle Scholar
  36. Moffet, R.C., B. de Foy, L.T. Molina, M.J. Molina, and K.A. Prather, 2008: Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry, Atmos. Chem. Phys., 8, 4499–4516.Google Scholar
  37. Nadal, F., and F.M. Bréon, 1999: Parameterization of surface polarized reflectances derived from POLDER spaceborne measurements, IEEE Trans. Geosci. Remote Sens., 37, 1709–1719.CrossRefGoogle Scholar
  38. Oka, K., and T. Kato, 1999: Spectroscopic polarimetry with a channeled spectrum, Opt. Lett., 24, 1475–1477.CrossRefGoogle Scholar
  39. Pollack, J.B., O.B. Toon, and B.N. Khare, 1973: Surface refractive index, Icarus, 19, 372–389.CrossRefGoogle Scholar
  40. Povel, H., H. Aebersold, and J.O. Stenflo, 1990: Charge-coupled device image sensor as a demodulator in a 2-D polarimeter with a piezoelastic modulator, Appl. Opt., 29, 1186–1190.CrossRefGoogle Scholar
  41. Raman, C.V., 1921: A method of improving the visibility of distant objects, Nature (London) 108, 242.CrossRefGoogle Scholar
  42. Redemann, J., Q. Zhang, B. Schmid, P.B. Russell, J.M. Livingston, H. Jonsson, and L.A. Remer, 2006: Assessment of MODIS-derived visible and near-IR aerosol optical properties and their spatial variability in the presence of mineral dust, Geophys. Res. Lett., 33, L18814, doi:10.1029/2006GL026626.CrossRefGoogle Scholar
  43. Rodgers C.D., 2000: Inverse Methods for Atmospheric Sounding, World Scientific.Google Scholar
  44. Rondeaux, G., and M. Herman, 1991: Polarization of light reflected by crop canopies. Rem. Sens. Environ., 38, 63–75.CrossRefGoogle Scholar
  45. Russell, P.B., J.M. Livingston, P. Hignett, S. Kinne, J. Wong, A. Chien, R. Bergstrom, P. Durkee, and P.V Hobbs (1999), Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer, J. Geophys. Res., 104(D2), 2289–2307.CrossRefGoogle Scholar
  46. Schmid, B., et al., 1997: Retrieval of optical depth and particle size distributions of tropospheric and stratospheric aerosols by means of sun photometry, IEEE Trans. Geosci. Remote Sens., 35, 172–181.CrossRefGoogle Scholar
  47. Schmid, B. et al., 2003: Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements, J. Geophys. Res., 108(D23), 8656, doi:10.1029/2002JD003361.CrossRefGoogle Scholar
  48. Shettle, E.P., and R.W. Fenn, 1979: Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties, Tech. Rep., AFGL-TR-79-0214, Air Force Geophys. Lab., Hanscomb AFB, MA.Google Scholar
  49. Strutt, J.W. (Lord Rayleigh), 1871: On the light from the sky it polarization and color, Phil. Mag. XLI, 107–120. Reprinted in Scientific Papers, Vol. I, Cambridge University Press, Cambridge, UK, 1899.Google Scholar
  50. Torres, O., P.K. Bhartia, J.R. Herman, Z. Ahmad, and J. Gleason (1998), Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis, J. Geophys. Res., 103(D14), 17099–17110.CrossRefGoogle Scholar
  51. Tucker, C.J., 1979: Red and photographic infrared linear combination for monitoring vegetation. Rem. Sens. Environ. 8, 127–150.CrossRefGoogle Scholar
  52. Vanderbilt V.C. et al., 1985: Specular, diffuse, and polarized light scattered by two wheat canopies, Appl. Opt., 24, 2408–2418.CrossRefGoogle Scholar
  53. Vermeiden, A., C. Devaux, and M. Herman, 2000: Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method, Appl. Opt., 39, 6207–6220.Google Scholar
  54. Waquet F, P. Goloub, J.-L. Deuzé, J.-F Léon, F. Auriol, C. Verwaerde, J.-Y. Balois, and P. Francois, 2007: Aerosol retrieval over land using a multi-band polarimeter and comparison with path radiance method}, J. Geophys. Res.}, 112}, Dl 11214, doi:10.1029/2006JD00CrossRefGoogle Scholar
  55. Waquet, F., B. Cairns, K. Knobespiesse, J. Chowdhary, L.D. Travis, B. Schmid, and M.I. Mishchenko, 2009: Polarimetric remote sensing of aerosols over land, J. Geophys. Res., 114, DOI 1206, doi:1029/2008JD010619.Google Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2009

Authors and Affiliations

  • Brian Cairns
    • 1
  • Fabien Waquet
    • 2
  • Kirk Knobelspiesse
    • 3
  • Jacek Chowdhary
    • 3
  • Jean-Luc Deuzé
    • 2
  1. 1.NASA Goddard Institute for Space StudiesNew YorkUSA
  2. 2.Laboratoire d’Optique Atmosphérique Cité ScientifiqueVilleneuve d’AscqFrance
  3. 3.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations