A Framework for Interactive Parameter Sweep Applications

  • Adianto Wibisono
  • Zhiming Zhao
  • Adam Belloum
  • Marian Bubak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5103)


This paper describes ongoing efforts on adding interactivity for performing parameter sweep experiments. The literature study and analysis of requirements gathered from use cases in various scientific domains indicate that interactivity is needed but not fully supported by most of existing frameworks designed to support parameter sweep applications. Based on this study we identify the requirements for interactivity during execution of parameter sweep experiments and the type of interactive actions needed to steer parameter sweep execution. Preliminary design of a framework that would support interactivity is presented and it will be analyzed further with Model Driven Architecture modelling approach and ORC to formally analyze grid service interaction used in this framework. The implementation of this framework will be based on existing components from WS-VLAM project.


e-Science parameter sweep interactivity workflows virtual laboratory 


  1. 1.
    Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An Architecture for a Resource Management Scheduling System in a Global Computational Grid. In: 4th International Conference on High-Performance Computing in the Asia-Pacific Region, pp. 283–289. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  2. 2.
    Casanova, H., Berman, F., Obertelli, G., Wolski, R.: The AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. Sci. Program. 8, 111–126 (2000)Google Scholar
  3. 3.
    Casanova, H., Bartol, T., Berman, F., Stiles, J.: Distributing MCell Simulations on the Grid. Int. J. High Perform. Comput. Appl. 15, 243–257 (2001)CrossRefGoogle Scholar
  4. 4.
    Casanova, H., Berman, F., Bartol, T., Gokcay, E., Sejnowski, T., Birnbaum, A., Dongarra, J., Miller, M., Ellisman, M., Faerman, M., Obertelli, G., Wolski, R., Pomerantz, S., Stiles, J.: The Virtual Instrument: Support for Grid-Enabled Mcell Simulations. Int. J. High Perform. Comput. Appl. 18, 3–17 (2004)CrossRefGoogle Scholar
  5. 5.
    Currle-Linde, N., Kuester, U., Resch, M., Risio, B.: Science Experimental Grid Laboratory (SEGL) Dynamic Parameter Study in Distributed Systems. In: Joubert, G.R., Nagel, W.E., Peters, F.J., Plata, O.G., Tirado, P., Zapata, E.L. (eds.) PARCO 2005, vol. 33, pp. 49–56. Central Institute for Applied Mathematics, Jülich, Germany (2005)Google Scholar
  6. 6.
    Djuric, D., Devedzic, V.: Model Driven Architecture and Ontology Development. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M., Moreau, L., Myers, J.: Examining the Challenges of Scientific Workflows. Computer 40, 24–32 (2007)CrossRefGoogle Scholar
  8. 8.
    Inda, M., Belloum, A., Roos, M., Vasyunin, D., de Laat, C., Hertzberger, L.O., Breit, T.M.: Interactive Workflows in a Virtual Laboratory for e-Bioscience: the SigWin-Detector Tool for Gene Expression Analysis. In: 2nd IEEE International conference on e-Science Grid computing, pp. 19–19. IEEE Computer Society, Washington (2006)Google Scholar
  9. 9.
    Kacsuk, M.: Parallel program development execution in the grid. In: International Conference on Parallel Computing in Electrical Engineering, pp. 131–138. IEEE Computer Society, Washington (2002)CrossRefGoogle Scholar
  10. 10.
    Olabarriaga, S., Nederveen, A., O’Nuallain, B.: Parameter Sweeps for Functional MRI Research in the Virtual Laboratory for e-Science Project. In: 7th IEEE International Symposium on Cluster Computing and the Grid, pp. 685–690. IEEE Computer Society, Washington (2007)CrossRefGoogle Scholar
  11. 11.
    Penttila, A., Zubko, E., Lumme, K., Muinonen, K., Yurkin, M., Draine, B., Rahola, J., Hoekstra, A., Shkuratov, Y.: Comparison between discrete dipole implementations exact techniques. J. Quant. Spectros. Radiat. Transf. 106, 417–436 (2007)CrossRefGoogle Scholar
  12. 12.
    Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen-Berg, H., Bannister, P., De Luca, M., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J., Matthews, P.: Advances in Functional Structural MR Image Analysis and Implementation as FSL. NeuroImage 23, 208–219 (2004)CrossRefGoogle Scholar
  13. 13.
    Stankovski, V., Dubitzky, W.: Special section: Data mining in grid computing environments. Future Gener. Comput. Syst. 23, 31–33 (2007)CrossRefGoogle Scholar
  14. 14.
    Stewart, A., Gabarro, J., Clint, M., Harmer, T.J., Kilpatrick, P., Perrott, R.: Managing Grid Computations: An ORC-Based Approach. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 278–291. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Wibisono, A., Vasyunin, D., Korkhov, V., Zhao, Z., Belloum, A., de Laat, C., Adriaans, P., Hertzberger, L.O.: WS-VLAM: A GT4 Based Workflow Management System. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4489, pp. 191–198. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Yau, S.M., Grinspun, E., Karamcheti, V., Zorin, D.: Sim-X: Parallel System Software for Interactive Multi-experiment Computational Studies. In: 20th International Parallel and Distributed Processing Symposium, pp. 10–10. IEEE Press, New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adianto Wibisono
    • 1
  • Zhiming Zhao
    • 1
  • Adam Belloum
    • 1
  • Marian Bubak
    • 1
    • 2
  1. 1.Informatics InstituteUniversity of AmsterdamAmsterdamthe Netherlands
  2. 2.Institute of Computer Science AGHKrakowPoland

Personalised recommendations