Advertisement

Complex Workflow Management of the CAM Global Climate Model on the GRID

  • V. Fernández-Quiruelas
  • J. Fernández
  • A. S. Cofiño
  • C. Baeza
  • F. García-Torre
  • R. M. San Martín
  • R. Abarca
  • J. M. Gutiérrez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5103)

Abstract

Recent trends in climate modeling find in GRID computing a powerful way to achieve results by sharing computing and data distributed resources. In particular, ensemble prediction is based on the generation of multiple simulations from perturbed model conditions to sample the existing uncertainties. In this work, we present a GRID application consisting of a state-of-the-art climate model (CAM) [1]. The main goal of the application is providing a user-friendly platform to run ensemble-based predictions on the GRID. This requires managing a complex workflow involving long-term jobs and data management in a user-transparent way. In doing so, we identified the weaknesses of current GRID middleware tools and developed a robust workflow by merging the optimal existing applications with an underlying self-developed workflow.

Keywords

GRID computing workflow long term jobs climate models CAM model El Niño phenomenon GRID-CAM application 

References

  1. 1.
    Collins, W.D., Rasch, P.J., Boville, B.A., Hack, J.J., McCaa, J.R., Williamson, D.L., Kiehl, J.T., Briegleb, B., Bitz, C., Lin, S.J., Zhang, M., Dai, Y.: Description of the NCAR Comunity Atmospheric Model (CAM 3.0). Technical Report NCAR/TN-464+STR, National Center for Atmospheric Research (2004), http://www.ccsm.ucar.edu/models/atm-cam/docs/description/description.pdf
  2. 2.
    Foster, I., Kesselman, C.: The grid. Blueprint for a new computing infrastructure. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  3. 3.
    Enabling Grids for E-sciencE (EGEE), http://www.eu-egee.org
  4. 4.
    E-infrastructure shared between Europe and Latin America (EELA), http://www.eu-eela.org
  5. 5.
    Palmer, T.N.: The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Quart. J. Royal Meteor. Soc. 128, 747–774 (2002)CrossRefGoogle Scholar
  6. 6.
    Hagedorn, R., Doblas–Reyes, F.J., Palmer, T.: The rationale behind the success of multi–model ensembles in seasonal forecasting - I. Basic concept. Tellus 57A, 219–233 (2005)Google Scholar
  7. 7.
  8. 8.
    Allen, M.: Do it yourself climate prediction. Nature 401, 642 (1999)CrossRefGoogle Scholar
  9. 9.
    Delaitre, T., Kiss, T., Goyeneche, A., Terstyanszky, G., Winter, S., Kacsuk, P.: GEMLCA: Running legacy code applications as Grid services. Journal of Grid Computing 3, 75–90 (2005)CrossRefGoogle Scholar
  10. 10.
    Delgado, A., Méndez, P., Donno, F., Sciabá, A., Campana, S., Santinelli, R.: LCG-2 user guide (2004), http://edms.cern.ch
  11. 11.
    Delgado, A., Méndez, P., Donno, F., Sciabá, A., Burke, S., Campana, S., Santinelli, R.: gLite 3 user guide (2007), https://edms.cern.ch/file/722398/1.1/gLite-3-UserGuide.html
  12. 12.
    Koblitz, B., Santos, N., Pose, V.: The amga metadata service. Journal of Grid Computing (2007) doi 10.1007/s10723-007-9084-6Google Scholar
  13. 13.
    GridWay 5.2 Documentation: User Guide: http://www.gridway.org/documentation/stable/userguide
  14. 14.
    Vázquez-Poletti, J.L., Huedo, E., Montero, R.S., Llorente, I.: A comparison between two grid scheduling philosophies: EGEE WMS and GridWay. Multiagent and Grid Systems 3(4), 429–439 (2007)zbMATHGoogle Scholar
  15. 15.
    Neocleous, K., Dikaiakos, M.D., Fragopoulou, V., Markatos, E.: Failure management in grids: The case of the EGEE infrastructure. Technical Report TR-0055, CoreGRID (2006), http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0055.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • V. Fernández-Quiruelas
    • 1
  • J. Fernández
    • 1
  • A. S. Cofiño
    • 1
  • C. Baeza
    • 1
  • F. García-Torre
    • 1
  • R. M. San Martín
    • 1
  • R. Abarca
    • 1
  • J. M. Gutiérrez
    • 1
  1. 1.(On behalf of the EELA team)University of Cantabria, Spain. SENAMHI, Perú. UDECChile

Personalised recommendations