Advertisement

RMOST: A Shared Memory Model for Online Steering

  • Daniel Lorenz
  • Peter Buchholz
  • Christian Uebing
  • Wolfgang Walkowiak
  • Roland Wismüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5103)

Abstract

Online steering means to visualize the current state of an application which includes application data and/or performance data, and to modify data in the application. Thus, in online steering the application as well as the steering tool must concurrently access and modify the same data at run time. In this paper a new model for online steering is presented which models the mechanism of online steering as access to a distributed shared memory. The integrity requirements of the steered application are analyzed. The integrity can be ensured through an appropriate consistency model. Finally, the online steering system RMOST is presented which is based on the distributed shared memory model and can be used to steer Grid jobs from the High Energy Physics experiment ATLAS.

Keywords

Data Object Consistency Model Steering System Read Operation Synchronization Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jha, S., et al.: A computational steering API for scientific Grid applications: Design, implementation and lessons. In: Workshop on Grid Application Programming Interfaces (September 2004)Google Scholar
  2. 2.
    Geist, G.A., et al.: CUMULVS: Providing fault-tolerance, visualization and steering of parallel applications. Int. J. of High Performance Computing Applications 11(3), 224–236 (1997)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Vetter, J.S., et al.: High performance computational steering of physical simulations. In: Proc. of the 11th Int. Symp. on Parallel Processing, pp. 128–134. IEEE, Los Alamitos (1999)Google Scholar
  4. 4.
    Ribler, R.L., et al.: The Autopilot performance-directed adaptive control system. Future Generation Computer Systems 18(1), 175–187 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Hart, D., et al.: Consistency considerations in the interactive steering of computations. Int. J. of Parallel and Distributed Syst. and Networks 2(3), 171–179 (1999)Google Scholar
  6. 6.
    Brunner, J.D., et al.: VASE: the visualization and application steering environment. In: Proc. 1993 ACM/IEEE conference on Supercomputing, pp. 560–569 (1993)Google Scholar
  7. 7.
    Brodlie, K., et al.: Visualization in grid computing environments. In: Proc. of IEEE Visualization 2004, pp. 155–162 (2004)Google Scholar
  8. 8.
    Lorenz, D., et al.: Online steering of HEP Grid applications. In: Proc. Cracow Grid Workshop 2006, Cracow, Poland, Academic Computer Centre CYFRONET AGH, pp. 191–198 (2007) Google Scholar
  9. 9.
  10. 10.
    Steinke, R.C., Nutt, G.J.: A unified theory of shared memory consistency. J. of the ACM 51, 800–849 (2004)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dubois, M., et al.: Memory access buffering in multiprocessors. In: ISCA 1986: Proc. of the 13th annual int. symp. on Computer architecture, pp. 434–442. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  12. 12.
    Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Comp. C-28(9), 690–691 (1979)CrossRefGoogle Scholar
  13. 13.
    Gharachorloo, K., et al.: Memory consistency and event ordering in scalable shared-memory multiprocessors. In: 25 Years ISCA: Retrospectives and Reprints, pp. 376–387 (1998)Google Scholar
  14. 14.
    Lipton, R.J., Sandberg, J.S.: PRAM: A scaleable shared memory. Technical Report CS-TR-180-88, Princeton University (September 1988)Google Scholar
  15. 15.
    The ATLAS Experiment, http://atlasexperiment.org
  16. 16.
    Lorenz, D., et al.: Secure connections for computational steering of Grid jobs. In: Proc. 16th Euromicro Int. Conf. on Parallel, Distributed and network-based Processing, Toulouse, France, pp. 209–217. IEEE, Los Alamitos (2008)Google Scholar
  17. 17.
  18. 18.
    Brun, R., et al.: ROOT - an object oriented data analysis framework. In: Proc. AIHENP 1996 Workshop. Number A 389 in Nuclear Instruments and Methods in Physics research, pp. 81–86 (1997) (1996)Google Scholar
  19. 19.
    Papadopoulos, P.M., et al.: CUMULVS: Extending a generic steering and visualization middleware for application fault-tolerance. In: Proc. 31st Hawaii Int. Conf. on System Sciences (HICSS-31) (January 1998)Google Scholar
  20. 20.
    Esnard, A., Dussere, M., Coulaud, O.: A time-coherent model for the steering of parallel simulations. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 90–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel Lorenz
    • 1
    • 2
  • Peter Buchholz
    • 1
  • Christian Uebing
    • 3
  • Wolfgang Walkowiak
    • 1
  • Roland Wismüller
    • 2
  1. 1.Experimental Particle PhysicsUniversity of SiegenGermany
  2. 2.Operating Systems and Distributed SystemsUniversity of SiegenGermany
  3. 3.Center for Information and Media TechnologyUniversity of SiegenGermany

Personalised recommendations