Advertisement

Grid Computing Solutions for Distributed Repositories of Protein Folding and Unfolding Simulations

  • Martin Swain
  • Vitaliy Ostropytskyy
  • Cândida G. Silva
  • Frederic Stahl
  • Olivier Riche
  • Rui M. M. Brito
  • Werner Dubitzky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5103)

Abstract

The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data and a data warehouse. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular we look at two aspects, first how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories – this is an important and challenging aspect of P-found because the data volumes involved are too large to be centralised. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling new scientific discoveries.

Keywords

Data Warehouse Client Application Grid Technology Resource Broker Globus Toolkit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Silva, C.G., Ostropytsky, V., Loureiro-Ferreira, N., et al.: P-found: The Protein Folding and Unfolding Simulation Repository. In: Proc. 2006 IEEE Symp. on Computational Intelligence in Bioinformatics and Computational Biology, pp. 101–108 (2006)Google Scholar
  2. 2.
    Foster, I.T.: Globus Toolkit Version 4: Software for Service-Oriented systems. J. Comput. Sci. Technol. 21, 513–520 (2006)CrossRefGoogle Scholar
  3. 3.
    Finkelstein, A., Gryce, C., Lewis-Bowen, J.: Relating Requirements and Architectures: A Study of Data-Grids. J. Grid Comput. 2, 207–222 (2004)CrossRefGoogle Scholar
  4. 4.
    Laure, E., Stockinger, H., Stockinger, K.: Performance Engineering in Data Grids. Concurrency - Practice and Experience 17, 171–191 (2005)CrossRefGoogle Scholar
  5. 5.
    Stankovski, V., Swain, M., Kravtsov, V., et al.: Grid-Enabling Data Mining Applications with DataMiningGrid: An Architectural Perspective. Future Gener. Comput. Syst. 24, 259–279 (2008)CrossRefGoogle Scholar
  6. 6.
    Swain, M., Hong, N.P.C.: Data Preprocessing using OGSA-DAI. In: Dubitzky, W. (ed.) Data Mining Techniques in Grid Computing Environments, Wiley, Chichester (in press)Google Scholar
  7. 7.
    Antonioletti, M., Atkinson, M., Baxter, R., et al.: The Design and Implementation of Grid Database Services in OGSA-DAI. Concurr. Comput.: Pract. Exper. 17, 357–376 (2005)CrossRefGoogle Scholar
  8. 8.
    Litzkow, M., Livny, M.: Experience with the Condor Distributed Batch System. In: Proc. IEEE Workshop on Experimental Distributed Systems, pp. 97–100 (1990)Google Scholar
  9. 9.
    Witten, I.H., Frank, E.: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  10. 10.
    Azevedo, P.J., Silva, C.G., Rodrigues, J.R., Loureiro-Ferreira, N., Brito, R.M.M.: Detection of Hydrophobic Clusters in Molecular Dynamics Protein Unfolding Simulations Using Association Rules. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS (LNBI), vol. 3745, pp. 329–337. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Fiser, B., Onan, U., Elsayed, I., Brezany, P., Tjoa, A.: On-Line Analytical Processing on Large Databases Managed by Computational Grids. In: Proc. 15th Int. Workshop on Database and Expert Systems Applications (2004)Google Scholar
  12. 12.
    Congiusta, A., Talia, D., Trunfio, P.: Distributed Data Mining Services Leveraging WSRF. Future Gener. Comput. Syst. 23, 34–41 (2007)CrossRefGoogle Scholar
  13. 13.
    Watson, P., Fowler, C.P., Kubicek, C., et al.: Dynamically Deploying Web Services on a Grid using Dynasoar. In: Proc. 9th IEEE Int. Symp. on Object and Component-Oriented Real-Time Distributed Computing (ISORC 2006), Gyeongju, Korea, pp. 151–158. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  14. 14.
    Ng, M.H., Johnston, S., Wu, B., et al.: BioSimGrid: Grid-Enabled Biomolecular Simulation Data Storage and Analysis. Future Gener. Comput. Syst. 22, 657–664 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Swain
    • 1
  • Vitaliy Ostropytskyy
    • 1
  • Cândida G. Silva
    • 2
  • Frederic Stahl
    • 1
  • Olivier Riche
    • 1
  • Rui M. M. Brito
    • 2
  • Werner Dubitzky
    • 1
  1. 1.School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland, UK
  2. 2.Chemistry Department, Faculty of Science and Technology, and Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations