Advertisement

A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems

  • Simon Portegies Zwart
  • Steve McMillan
  • Breanndán Ó Nualláin
  • Douglas Heggie
  • James Lombardi
  • Piet Hut
  • Sambaran Banerjee
  • Houria Belkus
  • Tassos Fragos
  • John Fregeau
  • Michiko Fuji
  • Evghenii Gaburov
  • Evert Glebbeek
  • Derek Groen
  • Stefan Harfst
  • Rob Izzard
  • Mario Jurić
  • Stephen Justham
  • Peter Teuben
  • Joris van Bever
  • Ofer Yaron
  • Marcel Zemp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5102)

Abstract

We present MUSE, a software framework for tying together existing computational tools for different astrophysical domains into a single multiphysics, multiscale workload. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for a generalized stellar systems workload. MUSE has now reached a “Noah’s Ark” milestone, with two available numerical solvers for each domain. MUSE can treat small stellar associations, galaxies and everything in between, including planetary systems, dense stellar clusters and galactic nuclei. Here we demonstrate an examples calculated with MUSE: the merger of two galaxies. In addition we demonstrate the working of MUSE on a distributed computer. The current MUSE code base is publicly available as open source at http://muse.li.

Keywords

Stellar Dynamics And Evolution Radiative Transfer Grid Computing High-Performance Computing Multi-Scale Computing 

References

  1. 1.
    Fryxell, B., et al.: FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. apjs 131, 273–334 (2000)CrossRefGoogle Scholar
  2. 2.
    Springel, V., Yoshida, N., White, S.D.M.: GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astronomy 6, 79–117 (2001)CrossRefGoogle Scholar
  3. 3.
    Portegies Zwart, S.F., McMillan, S.L.W., Hut, P., Makino, J.: Star cluster ecology - IV. Dissection of an open star cluster: photometry. MNRAS 321, 199–226 (2001)CrossRefGoogle Scholar
  4. 4.
    Lombardi Jr., J.C., Warren, J.S., Rasio, F.A., Sills, A., Warren, A.R.: Stellar Collisions and the Interior Structure of Blue Stragglers. apj 568, 939–953 (2002)CrossRefGoogle Scholar
  5. 5.
    Ercolano, B., Barlow, M.J., Storey, P.J.: The dusty mocassin: fully self-consistent 3d photoionization and dust radiative transfer models. MNRAS 362, 1038–1046 (2005)CrossRefGoogle Scholar
  6. 6.
    Eggleton, P.P.: The evolution of low mass stars. MNRAS 151, 351 (1971)Google Scholar
  7. 7.
    Paxton, B.: EZ to Evolve ZAMS Stars: A Program Derived from Eggleton’s Stellar Evolution Code. PASP 116, 699–701 (2004)CrossRefGoogle Scholar
  8. 8.
    Portegies Zwart, S.F., Verbunt, F.: Population synthesis of high-mass binaries. A & A 309, 179–196 (1996)Google Scholar
  9. 9.
    Barnes, J., Hut, P.: A Hierarchical O(NlogN) Force-Calculation Algorithm. Nat 324, 446–449 (1986)CrossRefGoogle Scholar
  10. 10.
    Hut, P., et al.: MODEST-1: Integrating stellar evolution and stellar dynamics. New Astronomy 8, 337–370 (2003)CrossRefGoogle Scholar
  11. 11.
    Sills, A., et al.: MODEST-2: a summary. New Astronomy 8, 605–628 (2003)CrossRefGoogle Scholar
  12. 12.
    Davies, M.B., et al.: The MODEST questions: Challenges and future directions in stellar cluster research. New Astronomy 12, 201–214 (2006)CrossRefGoogle Scholar
  13. 13.
    Lombardi, J.C., Thrall, A.P., Deneva, J.S., Fleming, S.W., Grabowski, P.E.: Modelling collision products of triple-star mergers. MNRAS 345, 762–780 (2003)CrossRefGoogle Scholar
  14. 14.
    Gaburov, E., Lombardi, J.C., Portegies Zwart, S.: Mixing in massive stellar mergers. MNRAS 9, L5–L9 (2008)Google Scholar
  15. 15.
    Makino, J., Aarseth, S.J.: On a hermite integrator with ahmad-cohen scheme for gravitational many-body problems. Publ. Astr. Soc. Japan 44, 141–151 (1992)Google Scholar
  16. 16.
    Makino, J.: Direct Simulation of Dense Stellar Systems with GRAPE-6. In: Deiters, S., Fuchs, B., Just, A., Spurzem, R., Wielen, R. (eds.) ASP Conf. Ser. 228: Dynamics of Star Clusters and the Milky Way, p. 87 (2001)Google Scholar
  17. 17.
    Portegies Zwart, S.F., Belleman, R.G., Geldof, P.M.: High-performance direct gravitational N-body simulations on graphics processing units. New Astronomy 12, 641–650 (2007)CrossRefGoogle Scholar
  18. 18.
    Belleman, R.G., Bédorf, J., Portegies Zwart, S.F.: High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astronomy 13, 103–112 (2008)CrossRefGoogle Scholar
  19. 19.
    Eggleton, P.P., Fitchett, M.J., Tout, C.A.: The distribution of visual binaries with two bright components 347, 998–1011 (1989)Google Scholar
  20. 20.
    Makino, J., Taiji, M.: Scientific simulations with special-purpose computers: The GRAPE systems. In: Makino, J., Taiji, M. (eds.) Scientific simulations with special-purpose computers: The GRAPE systems, John Wiley & Sons, Chichester, Toronto (1998)Google Scholar
  21. 21.
    Hamada, T., Fukushige, T., Makino, J.: PGPG: An Automatic Generator of Pipeline Design for Programmable GRAPE Systems. In: ArXiv Astrophysics e-prints (March 2007)Google Scholar
  22. 22.
    Heggie, D.C.: Binary evolution in stellar dynamics. MNRAS 173, 729–787 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Simon Portegies Zwart
    • 1
  • Steve McMillan
    • 2
  • Breanndán Ó Nualláin
    • 1
  • Douglas Heggie
    • 3
  • James Lombardi
    • 4
  • Piet Hut
    • 5
  • Sambaran Banerjee
    • 6
  • Houria Belkus
    • 7
  • Tassos Fragos
    • 8
  • John Fregeau
    • 8
  • Michiko Fuji
    • 9
  • Evghenii Gaburov
    • 1
  • Evert Glebbeek
    • 10
  • Derek Groen
    • 1
  • Stefan Harfst
    • 1
  • Rob Izzard
    • 10
  • Mario Jurić
    • 5
  • Stephen Justham
    • 11
  • Peter Teuben
    • 12
  • Joris van Bever
    • 13
  • Ofer Yaron
    • 14
  • Marcel Zemp
    • 15
  1. 1.University of AmsterdamAmsterdamThe Netherlands
  2. 2.Drexel UniversityPhiladelphiaUSA
  3. 3.University of EdinburghEdinburghUK
  4. 4.Allegheny CollegeMeadvilleUSA
  5. 5.Institute for Advanced Study PrincetonUSA
  6. 6.Tata Institute of Fundamental Research India
  7. 7.Vrije Universiteit BrusselBrusselBelgium
  8. 8.Northwestern UniversityEvanston ILUSA
  9. 9.University of TokyoTokyoJapan
  10. 10.Utrecht UniversityUtrechtthe Netherlands
  11. 11.University of OxfordOxfordUK
  12. 12.University of MarylandCollege ParkUSA
  13. 13.Saint Mary’s UniversityHalifaxCanada
  14. 14.Tel Aviv UniversityTel AvivIsrael
  15. 15.University of California Santa CruzSanta CruzUSA

Personalised recommendations