Advertisement

A Multiphysics Model of Myoma Growth

  • Dominik Szczerba
  • Bryn A. Lloyd
  • Michael Bajka
  • Gábor Székely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5102)

Abstract

We present a first attempt to create an in-silico model of a uterine leiomyoma, a typical exponent of a common benign tumor. We employ a finite element model to investigate the interaction between a chemically driven growth of the pathology and the mechanical response of the surrounding healthy tissue. The model includes neoplastic tissue growth, oxygen and growth factor transport as well as angiogenic sprouting. Neovascularisation is addressed implicitly by modeling proliferation of endothelial cells and their migration up the gradient of the angiogenic growth factor, produced in hypoxic regions of the tumor. The response of the surrounding healthy tissue in our model is that of a viscoelastic material, whereby a stress exerted by expanding neoplasm is slowly dissipated. By incorporating the interplay of four underlying processes we are able to explain experimental findings on the pathology’s phenotype. The model has a potential to become a computer simulation tool to study various growing conditions and treatment strategies and to predict post-treatment conditions of a benign tumor.

Keywords

Uterine Leiomyoma Angiogenic Growth Factor Endothelial Cell Density Growth Agent Common Benign Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mencaglia, L., Hamou, J.E.: Manual of Gynecological Hysteroscopy. Endo-Press (2001)Google Scholar
  2. 2.
    Walocha, J.A., Litwin, J.A., Miodonski, A.J.: Vascular system of intramural leiomyomata revealed by corrosion casting and scanning electron microscopy. Hum. Reprod. 18(5), 1088–1093 (2003)CrossRefGoogle Scholar
  3. 3.
    Szczerba, D., Szekely, G.: Simulating vascular systems in arbitrary anatomies. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 641–648. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Szczerba, D., Szekely, G., Kurz, H.: A multiphysics model of capillary growth and remodeling. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 86–93. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Lloyd, B., Szczerba, D., Székely, G.: A coupled finite element model of tumor growth and vascularization. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 874–881. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Gordon, V.D., Valentine, M.T., Gardel, M.L., Andor-Ardo, D., Dennison, S., Bogdanov, A.A., Weitz, D.A., Deisboeck, T.S.: Measuring the mechanical stress induced by an expanding multicellular tumor system: a case study. Experimental Cell Research 289(1), 58–66 (2003)CrossRefGoogle Scholar
  7. 7.
    Ausprunk, D.H., Folkman, J.: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvascular Research (1977)Google Scholar
  8. 8.
    Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. Journal of Mathematical Biology V46(3), 191–224 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Humphrey, J.D., DeLange, S.: An Introduction to Biomechanics. In: Solids and Fluids, Analysis and Design. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth. J. Cell. Physiol. 124(3), 516–524 (1985)CrossRefGoogle Scholar
  11. 11.
    Frieboes, H.B., Zheng, X., Sun, C.H., Tromberg, B., Gatenby, R., Cristini, V.: An integrated computational/experimental model of tumor invasion. Cancer Res. 66(3), 1597–1604 (2006)CrossRefGoogle Scholar
  12. 12.
    Salathe, E.P., Xu, Y.H.: Non-linear phenomena in oxygen transport to tissue. Journal of Mathematical Biology 30(2), 151–160 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Ji, J.W., Tsoukias, N.M., Goldman, D., Popel, A.S.: A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J. Theor. Biol. 241(1), 94–108 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Vaupel, P., Schlenger, K., Knoop, C., Höckel, M.: Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized o2 tension measurements. Cancer Res. 51(12), 3316–3322 (1991)Google Scholar
  15. 15.
    Gabhann, F.M., Popel, A.S.: Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 292(1), H459–H474 (2007)CrossRefGoogle Scholar
  16. 16.
    Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology V60(5), 857–899 (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Stokes, C.L., Rupnick, M.A., Williams, S.K., Lauffenburger, D.A.: Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest. 63(5), 657–668 (1990)Google Scholar
  18. 18.
    Ursino, M., Giammarco, P.D., Belardinelli, E.: A mathematical model of cerebral blood flow chemical regulation–Part I: Diffusion processes. IEEE Trans. Biomed. Eng. 36(2), 183–191 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dominik Szczerba
    • 1
  • Bryn A. Lloyd
    • 1
  • Michael Bajka
    • 2
  • Gábor Székely
    • 1
  1. 1.Computer Vision LaboratoryETHZürichSwitzerland
  2. 2.Clinic of GynecologyUniversity Hospital of ZürichSwitzerland

Personalised recommendations