Integration of Ab Initio Nuclear Physics Calculations with Optimization Techniques

  • Masha Sosonkina
  • Anurag Sharda
  • Alina Negoita
  • James P. Vary
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5101)

Abstract

Optimization techniques are finding their inroads into the field of nuclear physics calculations where the objective functions are very complex and computationally intensive. A vast space of parameters needs searching to obtain a good match between theoretical (computed) and experimental observables, such as energy levels and spectra. In this paper, we propose a design integrating the ab initio nuclear physics code MFDn and the VTDIRECT95 code for derivative-free optimization. We experiment with the initial implementation of the design showing good matches for several single-nucleus cases. For the parallel MFDn code, we determine appropriate processor numbers to execute efficiently a multiple-nuclei parameter search.

Keywords

No Core Shell Model MFDn Derivative-free Optimization VTDIRECT95 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Navratil, P., Vary, J., Barrett, B.: Properties of 12C in the ab-initio Nuclear Shell Model. Phys. Rev. Lett. 84, 5728 (2000)CrossRefGoogle Scholar
  2. 2.
    Navratil, P., Vary, J., Barrett, B.: Large-basis ab-initio No-core Shell Model and its application to 12C. Physical Review C62, 54311 (2000)Google Scholar
  3. 3.
    Vary, J., Popescu, S., Stocia, S., Navratil, P.: No Core Shell Model A=47 and A=49. nucl-th/0607041/Google Scholar
  4. 4.
    Machleidt, R., Sammarruca, F., Song, Y.: Nonlocal nature of the nuclear force and its impact on nuclear structure. Phys. Rev. C53, C63, 024001, Ref 9 (1996, 2001)Google Scholar
  5. 5.
    Vary, J.: The Many-Fermion Dynamics Shell-Model Code. Iowa State University (1992)Google Scholar
  6. 6.
    He, J., Watson, L., Sosonkina, M.: Algorithm XXX: VTDIRECT95: Serial and parallel codes for the global optimization algorithm DIRECT. ACM Transactions on Math. Soft. (submitted, 2007)Google Scholar
  7. 7.
    Jones, D.: The DIRECT global optimization algorithm. Encyclopedia of Optimization 1, 431–440 (2001)CrossRefGoogle Scholar
  8. 8.
    Jones, D., Pertunen, C., Stuckman, B.: Lipschtzian optimization without the Lipscitz constant. J. Optimization Theory and Applications 79, 157–181 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Electronic version of nuclear data sheets. telnet://bnlnd2.dne.bnl.govGoogle Scholar
  10. 10.
    Burrows, T.: Nuclear data sheets, 74, 1; Nuclear data sheets 76, 191 (1995)Google Scholar
  11. 11.
    Benson, S., McInnes, L.C., Moré, J., Munson, T., Sarich, J.: TAO user manual (revision 1.9). Technical Report ANL/MCS-TM-242, Mathematics and Computer Science Division, Argonne National Laboratory (2007), http://www.mcs.anl.gov/tao

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Masha Sosonkina
    • 1
  • Anurag Sharda
    • 1
  • Alina Negoita
    • 2
  • James P. Vary
    • 2
  1. 1.Ames Laboratory/DOEIowa State UniversityAmesUSA
  2. 2.Physics DepartmentIowa State UniversityAmesUSA

Personalised recommendations