Advertisement

Effective Emission Tomography Image Reconstruction Algorithms for SPECT Data

  • J. Ramírez
  • J. M. Górriz
  • M. Gómez-Río
  • A. Romero
  • R. Chaves
  • A. Lassl
  • A. Rodríguez
  • C. G. Puntonet
  • F. Theis
  • E. Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5101)

Abstract

Medical image reconstruction from projections is computationally intensive task that demands solutions for reducing the processing delay in clinical diagnosis applications. This paper analyzes reconstruction methods combined with pre- and post-filtering for Single Photon Emission Computed Tomography (SPECT) in terms of convergence speed and image quality. The evaluation is performed by means of an image database taken from a concurrent study investigating the use of SPECT as a diagnostic tool for the early onset of Alzheimer-type dementia. Filtered backprojection (FBP) methods combined with frequency sampling 2D pre- and post-filtering provides a good trade-off between image quality and delay. Maximum likelihood expectation maximization (ML-EM) improves the quality of the reconstructed image but with a considerable increase in processing delay. To overcome this problem the ordered subsets expectation maximization (OS-EM) method is found to be an effective algorithm for reducing the computational cost with an image quality similar to ML-EM.

Keywords

Single Photon Emission Compute Tomography Single Photon Emission Compute Tomography Image Order Subset Expectation Maximization Processing Delay High Frequency Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vandenberghea, S., D’Asselera, Y., de Wallea, R.V., Kauppinenb, T., Koolea, M., Bouwensa, L., Laerec, K.V., Lemahieua, I., Dierckx, R.: Iterative reconstruction algorithms in nuclear medicine. Computerized Medical Imaging and Graphics, 105–111 (2001)Google Scholar
  2. 2.
    Bruyant, P.P.: Analytic and iterative reconstruction algorithms in spect. The Journal of Nuclear Medicine 43, 1343–1358 (2002)Google Scholar
  3. 3.
    Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging MI-1, 113–122 (1982)CrossRefGoogle Scholar
  4. 4.
    Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography. Journal of the American Statistical Association 80, 8–20 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lange, K., Carson, R.: Em reconstruction for emission and transmission tomography. Journal of Computer Assisted Tomography 8, 306–312 (1984)Google Scholar
  6. 6.
    Chornoboy, E.S., Chen, C.J., Miller, M.I., Miller, T.R., Snyder, D.L.: An evaluation of maximum likelihood reconstruction for spect. IEEE Transactions on Medical Imaging 9, 99–110 (1990)CrossRefGoogle Scholar
  7. 7.
    Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Transactions on Medical Imaging 13, 601–609 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Ramírez
    • 1
  • J. M. Górriz
    • 1
  • M. Gómez-Río
    • 2
  • A. Romero
    • 1
  • R. Chaves
    • 1
  • A. Lassl
    • 1
  • A. Rodríguez
    • 2
  • C. G. Puntonet
    • 4
  • F. Theis
    • 5
  • E. Lang
    • 3
  1. 1.Dept. of Signal Theory, Networking and CommunicationsUniversity of GranadaSpain
  2. 2.Servicio de Medicina NuclearHospital Universitario Virgen de las Nieves (HUVN)GranadaSpain
  3. 3.Institut für Biophysik und physikalische BiochemieUniversity of RegensburgGermany
  4. 4.Dept. of Architecture and Computer TechnologyUniversity of GranadaSpain
  5. 5.Max Planck Institute for Dynamics and Self-OrganisationBernstein Center for Computational NeuroscienceGöttingenGermany

Personalised recommendations