Integrated Data and Task Management for Scientific Applications

  • Jarek Nieplocha
  • Sriram Krishamoorthy
  • Marat Valiev
  • Manoj Krishnan
  • Bruce Palmer
  • P. Sadayappan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5101)

Abstract

Several emerging application areas require intelligent management of distributed data and tasks that encapsulate execution units for collection of processors or processor groups. This paper describes an integration of data and task parallelism to address the needs of such applications in context of the Global Array (GA) programming model. GA provides programming interfaces for managing shared arrays based on non-partitioned global address space programming model concepts. Compatibility with MPI enables the scientific programmer to benefit from performance and productivity advantages of these high level programming abstractions using standard programming languages and compilers.

Keywords

Global Array programming computational kernels MPI task management data management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Apra, E.: Advances, Applications and Performance of the Global Arrays Shared Memory Programming Toolkit. International Journal of High Performance Computing and Applications 20(2) (2006)Google Scholar
  2. 2.
    Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: Midway distributed shared memory system. In: 38th Annual IEEE Computer Society International Computer Conference – COMPCON SPRING 1993, February 22-26 1993, pp. 528–537. IEEE, Piscataway (1993)Google Scholar
  3. 3.
    Cox, A.L., Dwarkadas, S., Lu, H., Zwaenepoel, W.: Evaluating the performance of software distributed shared memory as a target for parallelizing compilers. In: 1997 11th International Parallel Processing Symposium, IPPS 1997, April 1-5 1997, pp. 474–482. IEEE, Los Alamitos (1997)CrossRefGoogle Scholar
  4. 4.
    Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK: A Linear Algebra Library for Message-Passing Computers. In: Proceedings of Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN (1997)Google Scholar
  5. 5.
    Benson, S., McInnes, L., Moré, J., Sarich, J.: Toolkit for Advanced Optimization (TAO) User Manual. ANL/MCS-TM-242 (2004), http://www.mcs.anl.gov/tao
  6. 6.
    Benson, S., Krishnan, M., McInnes, L.C., Nieplocha, J., Sarich, J.: Using the GA and TAO toolkits for solving large-scale optimization problems on parallel computers. ACM Trans. Math. Softw. 33(2), 11 (2007)CrossRefGoogle Scholar
  7. 7.
    Nieplocha, J., Tipparaju, V., Krishnan, M., Panda, D.: High Performance Remote Memory Access Communications: The ARMCI Approach. International Journal of High Performance Computing and Applications 20(2) (2006)Google Scholar
  8. 8.
    Chakrabarti, S., Demmel, J., Yelick, K.: Modeling the benefits of mixed data and task parallelism. In: Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures, June 24-26, 1995, pp. 74–83 (1995)Google Scholar
  9. 9.
    Krishnamoorthy, S., Nieplocha, J., Sadayappan, P.: Data and computation abstractions for dynamic and irregular computations. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Krishnamoorthy, S., Catalyurek, U., Nieplocha, J.: Hypergraph partitioning for automatic memory hierarchy management. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2006) (November 2006)Google Scholar
  11. 11.
    Dinan, J., Krishnamoorthy, S., Larkins, B., Nieplocha, J., Sadayappan, P.: Scioto: A framework for global-view task parallelism (under submission)Google Scholar
  12. 12.
    Bal, H.E., Haines, M.: Approaches for Integrating Task and Data Parallelism. IEEE Concurrency 6(3), 74–84 (1998)CrossRefGoogle Scholar
  13. 13.
    Rauber, T., Rünger, G.: Library support for hierarchical multi-processor tasks. In: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, November 16, 2002, pp. 1–10 (2002)Google Scholar
  14. 14.
    Kamiya, M., Hirata, S., Valiev, M.: Fast electron correlation methods for molecular clusters without basis set superposition errors. Journal of Chemical Physics 128(7), 74103 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jarek Nieplocha
    • 1
  • Sriram Krishamoorthy
    • 1
  • Marat Valiev
    • 1
  • Manoj Krishnan
    • 1
  • Bruce Palmer
    • 1
  • P. Sadayappan
    • 2
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.The Ohio State UniversityColumbusUSA

Personalised recommendations