Advertisement

Improving Metaheuristics for Mapping Independent Tasks into Heterogeneous Memory-Constrained Systems

  • Javier Cuenca
  • Domingo Giménez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5101)

Abstract

This paper shows different strategies for improving some metaheuristics for the solution of a task mapping problem. Independent tasks with different computational costs and memory requirements are scheduled in a heterogeneous system with computational heterogeneity and memory constraints. The tuned methods proposed in this work could be used for optimizing realistic systems, such as scheduling independent processes onto a processors farm.

Keywords

processes mapping metaheuristics heterogeneous systems 

References

  1. 1.
    Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2nd edn. Prentice-Hall, Englewood Cliffs (2005)Google Scholar
  2. 2.
    Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley, Reading (2003)Google Scholar
  3. 3.
    Banino, C., Beaumont, O., Legrand, A., Robert, Y.: Sheduling strategies for master-slave tasking on heterogeneous processor grids. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds.) PARA 2002. LNCS, vol. 2367, pp. 423–432. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Pinau, J.F., Robert, Y., Vivien, F.: Off-line and on-line scheduling on heterogeneous master-slave platforms. In: 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2006), pp. 439–446 (2006)Google Scholar
  5. 5.
    Brucker, P.: Scheduling Algorithms, 1st edn. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  6. 6.
    Lennerstad, H., Lundberg, L.: Optimal scheduling results for parallel computing. SIAM News, 16–18 (1994)Google Scholar
  7. 7.
    Cuenca, J., Giménez, D., López, J.J., Martínez-Gallary, J.P.: A proposal of metaheuristics to schedule independent tasks in heterogeneous memory-constrained systems. In: CLUSTER (2007)Google Scholar
  8. 8.
    Hromkovic, J.: Algorithmics for Hard Problems, 2nd edn. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization. Springer (2005)Google Scholar
  10. 10.
    Raidl, G.R.: A unified view on hybrid metaheuristics. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Javier Cuenca
    • 1
  • Domingo Giménez
    • 2
  1. 1.Departamento de Ingeniería y Tecnología de ComputadoresUniversidad de MurciaMurciaSpain
  2. 2.Departamento de Informática y SistemasUniversidad de MurciaMurciaSpain

Personalised recommendations