Pollarder: An Architecture Concept for Self-adapting Parallel Applications in Computational Science

  • Andreas Schäfer
  • Dietmar Fey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5101)


Utilizing grid computing resources has become crucial to advances in today’s computational science and engineering. To sustain efficiency, applications have to adapt to changing execution environments. Suitable implementations require huge efforts in terms of time and personnel. In this paper we describe the design of the Pollarder framework, a work in progress which offers a new approach to grid application componentization. It is based on a number of specialized design patterns to improve code reusability and flexibility. An adaptation layer handles environment discovery and is able to construct self-adapting applications from a user supplied library of components. We provide first experiences gathered with a prototype implementation.


grid computing scientific computing self-adaptation 


  1. 1.
    Goodale, T., Allen, G., Lanfermann, G., Masso, J., Radke, T., Seidel, E., Shalf, J.: The Cactus Framework and Toolkit: Design and Applications. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds.) VECPAR 2002. LNCS, vol. 2565. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Bernholdt, D.E., Allan, B.A., Armstrong, R.C., Bertrand, F., Chiu, K., Dahlgren, T.L., Damevski, K., Elwasif, W.R., Epperly, T.G., Govindaraju, M., Katz, D.S., Kohl, J.A., Krishnan, M.K., Kumfert, G.K., Larson, J.W., Lefantzi, S., Lewis, M.J., Malony, A.D., McInnes, L.C., Nieplocha, J., Norris, B., Parker, S.G., Ray, J., Shende, S., Windus, T.L., Zhou, S.: A Component Architecture for High-Performance Scientific Computing. International Journal of High Performance Computing Applications 20, 163–202 (2006)CrossRefGoogle Scholar
  3. 3.
    Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.: Programming, Deploying, Composing, for the Grid. In: Grid Computing: Software Environments and Tools. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Fowler, M.: Inversion of Control Containers and the Dependency Injection Pattern (2004)Google Scholar
  5. 5.
    Mattson, T.G., Sanders, B.A., Massingil, B.L.: Patterns for Parallel Programming. Addison Wesley Professional, Reading (2004)Google Scholar
  6. 6.
    Quinn, M.J. (ed.): Parallel Programming in C with MPI and OpenMP, vol. 1. Mc Graw Hill, New York (2003)Google Scholar
  7. 7.
    Heyer, L., Kruglyak, S., Yooseph, S.: Exploring expression data: identication and analysis of coexpressed genes. Genome Research 9, 1106–1115 (1999)CrossRefGoogle Scholar
  8. 8.
    Schäfer, A., Erdmann, J., Fey, D.: Simulation of Dendritic Growth for Materials Science in Multi-Cluster Environments. In: Workshop Grid4TS, vol. 3 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Schäfer
    • 1
  • Dietmar Fey
    • 1
  1. 1.Lehrstuhl für Rechnerarchitektur und-kommunikation, Institut für InformatikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations