Behavioural Skeletons Meeting Services

  • M. Danelutto
  • G. Zoppi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5101)

Abstract

Behavioural skeletons have been introduced as a suitable way to model autonomic management of parallel, distributed (grid) applications. A behavioural skeleton is basically a skeleton with an associated autonomic manager taking care of non-functional issues related to skeleton implementation. Here we discuss an implementation of a task farm behavioural skeleton exploiting SCA, the Service Component Architecture recently introduced by IBM. This implementation is meant to provide plain service/SCA users some efficient skeleton modelling common parallel application pattern and also to investigate the advantages and the problems relative to skeletons in the service world. Experimental results are eventually discussed.

Keywords

Service Time Programming Paradigm Autonomic Management High Level Programming Algorithmic Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Jboss rules home page (2008), http://www.jboss.com/products/rules
  3. 3.
    Tuscany home page (2008), http://incubator.apache.org/tuscany/
  4. 4.
    Aldinucci, M., Bertolli, C., Campa, S., Coppola, M., Vanneschi, M., Veraldi, L., Zoccolo, C.: Self-Configuring and Self-Optimising Grid Components in the GCM model and their ASSIST implementation. In: Proceedings of HPC-GECO/Compframe Workshop, Paris, HPDC-15 associate workshop (2006)Google Scholar
  5. 5.
    Aldinucci, M., Campa, S., Danelutto, M., Dazzi, P., Kilpatrick, P., Laforenza, D., Tonellotto, N.: Behavioural skeletons for component autonomic management on grids. In: CoreGRID Workshop on Grid Programming Model, Grid and P2P Systems Architecture, Grid Systems, Tools and Environments, Heraklion (June 2007)Google Scholar
  6. 6.
    Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Kilpatrick, P., Dazzi, P., Laforenza, D., Tonellotto, N.: Behavioural skeletons in gcm: autonomic management of grid components. In: Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-based Processing, Toulouse, France, IEEE, Los Alamitos (2008)Google Scholar
  7. 7.
    Aldinucci, M., Coppola, M., Danelutto, M., Tonellotto, N., Vanneschi, M., Zoccolo, C.: High level grid programming with ASSIST. Computational Methods in Science and Technology 12(1), 21–32 (2006)Google Scholar
  8. 8.
    Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: A Structured High level programming language and its structured support. Concurrency Practice and Experience 7(3), 225–255 (1995)CrossRefGoogle Scholar
  9. 9.
    Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computations. Research Monographs in Parallel and Distributed Computing. Pitman (1989)Google Scholar
  10. 10.
    Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel Programming. Parallel Computing 30(3), 389–406 (2004)CrossRefGoogle Scholar
  11. 11.
    Cole, M., Benoit, A.: The Edinburgh Skeleton Library home page (2005), http://homepages.inf.ed.ac.uk/abenoit1/eSkel/
  12. 12.
    Darlington, J., Field, A.J., Harrison, P.G., Kelly, P.H.J., Sharp, D.W.N., Wu, Q., While, R.L.: Parallel Programming Using Skeleton Functions. In: Reeve, M., Bode, A., Wolf, G. (eds.) PARLE 1993. LNCS, vol. 694. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Gorlatch, S., Dünnweber, J.: From grid middleware to grid applications: Bridging the gap with HOCs. In: Getov, V., Laforenza, D., Reinefeld, A. (eds.) Future Generation Grids, Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)Google Scholar
  15. 15.
    Kuchen, H.: A skeleton library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 620–629. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    GridComp: Effective Components for the Grids (2007), http://gridcomp.ercim.org/
  17. 17.
    ProActive home page (2007), http://www-sop.inria.fr/oasis/proactive/
  18. 18.
    Serot, J., Ginhac, D., Derutin, J.P.: SKiPPER: A Skeleton-Based Parallel Programming Environment for Real-Time Image Processing Applications. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662, Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Vanneschi, M.: PQE2000: HPC tools for industrial applications. IEEE Concurrency 6(4), 68–73 (1998)CrossRefGoogle Scholar
  20. 20.
    W3C. Web services home page (2006), http://www.w3.org/2002/ws/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Danelutto
    • 1
    • 2
  • G. Zoppi
    • 1
  1. 1.Dept. Computer ScienceUniv. Pisa 
  2. 2.CoreGRID Programming Model Institute 

Personalised recommendations